IP Multicast Fast Reroute

follow-up on draft-dimitri-rtgwg-mfrr-framework-00

RTG Working Group
IETF 75 meeting
Stockholm (Sweden)
July 2009
Status

• Draft initially presented in Dublin (IETF 72)

• Work on multicast routing recovery specifics

• Work on transient/temporary loops during reconvergence period
Goal

- Investigate solution space for improving multicast distribution trees (MDT) recovery time

- Topological failures (e.g. links and nodes)

 -> Analyze new proposals as well as existing solutions aimed at reducing impact of the scaling factors of PIM convergence
Convergence & recovery time analysis

• **Recovery time** (T_R): upon MDT failure
 Time after which all receivers have restored connectivity to MDT (so, receive again multicast traffic streams)

• **Convergence time** (T_C): upon MDT failure
 Time after which all MFIB updates have been performed by all the routers

• T_R and T_C dependence
 – PIM variant
 – Network topology size and shape
 – Number of mcast groups affected
Mcast FRR solution space

• **Track 1**: re-use/extend existing unicast FRR to protect/recover MDT

 – FRR scheme extended to incorporate a certain level of “multicast-awareness”

 • Decrease time for PIM message exchange

 -> Tuning unicast routing re-convergence to decrease RIB-related operations time

 • Decrease time required to propagate fail-over information by retro-fit into unicast FRR scheme

 -> Tuning failure notification time
Mcast FRR solution space

• **Track 2**: PIM built-in extensions to improve convergence time
 – Existing solutions: Anycast RP, Dual multicast topologies
 • Tackle specific failure cases and rely on abstracting reachability and/or topology
 • Drawbacks of tweaking Hello timers
 – Example: upon mcast state change, trigger J/P message *conditionally* to prevent transients loops
 • Transient loops may be induced from the use of multiple MFIBs entries for same mcast group (resulting from PIM Join exchanges prior and after failure)
Track 2: Problem Space

- **Tweaking Hello Timers**
 - May lead to faster failure detection but also increases processing overhead and results in PIM neighbor being declared down due to missed Hellos (if Hello packets are not prioritized)
 - Other drawback: dependence created between Hello exchanges for maintaining interface liveness and learn about neighboring PIM routers/capability negotiation/etc.

- **Alternative**
 - Extend PIM mechanisms (potentially by using another fast failure detection) to improve the convergence time
 - Multicast routing-specific components that can benefit from such improvement: time needed for sending a Join/Prune message as a result of multicast state change
 - **Must be accompanied by set of conditions to prevent transients loops** that may be induced from the use of multiple MFIBs entries for mcast group (resulting from PIM-JOIN exchanges prior and after failure)
Case 1: Multicast Routing Failure

- **Condition**: PIM routing is down and Join, Prune or Hello messages cannot be sent or treated anymore: MRIB entries have consistency problem and disrupt node’s RPF-neighbor

- **Consequences**
 - *Join/Prune, Hello* messages cannot be exchanged anymore: PIM neighbor adjacencies between nodes B-C and A-B will be lost at Holdtime elapsing (3.5 x Hello Period)
 - *Join/Prune* messages periodically exchanged every 60s (by default) between Join/Prune Messages: Holdtime specified in a Join/Prune message should be set to 210s (3.5 x J/P period)

=> MFIB cannot be updated if members arrive or leave
- However, multicast traffic can still be forwarded according to MFIB as entries are valid for 180 seconds (delay of storage before clearing entries in MFIB)
Approach

- MFIB entries are valid for only 180 seconds
 - *Join* refresh messages are not sent anymore
 - Need to maintain these entries after this delay expiration to ensure multicast forwarding

- **Idea**: freeze MFIB entries on nodes all along the path (where the failed router is present)
 - Failed node does not forward *Join* anymore all along the path (as stored in MRIB)
 - MFIB entries of nodes (that do not received *Join* messages anymore) need to be freezed and self-refreshed

To freeze MFIB entries for (pre-determined) period
- Prior to failure, negotiation between PIM neighbors of "recovery" period
- Upon failure, timer activation at nodes contiguous to failure (PIM routing and MRIB recovery to be triggered)
- Contiguous nodes behave "as is" wrt own downstream neighbors
Algorithm 1: RPF-Check at B is OK

- Multicast forwarding can be assured in this case by self-refreshing entries during the period of recovery (at downstream neighbors)
- Definition of delay for this period of recovery
- Neighbors of B have to be aware of the period during which that in order to continue sending Join messages to maintain the entries in the MFIB
- If this period is too long: compute new backup tree (excluding) node B
 - Find a backup structure in the multicast routing topology where the node that has failed has been completely removed
 - The alternate paths should be computed without the failed node and all the nodes that compute alternate paths have to be aware of this failure
Algorithm 2: RPF-Check at B is not OK

1. Downstream neighbors of B need to find an alternate path
 Node B cannot initiate itself the demand as it cannot forward Join/Prune

2. Each downstream neighbor computes shortest path towards A or towards nearest node that is crossed by MDT (in the topology where B has been removed)

3. As B has failed and as downstream nodes are not aware of event: some information to be inserted in Join message (or before sending Join, specific Notification message) so that nodes along the path can avoid node B when computing the new path
Case 2: Multicast Routing Failure

- **Conditions**: PIM routing is ok, RPF Check is down
 - MRIB consistency problem due to some topological changes (due to metric update or a link up or down)
 - Entries do not match good RPF-neighbor
 - However, node can still send Join/Prune or Hello messages

- As some topological changes occurred, there should be a switchover of the current MDT to a new MDT (accounting of new topology)
- Some specific rules for switchover to be enforced as some transient loops may occur
• Cause: No synchronization in propagation of the Join/Prune messages
 – A part of the old MDT may exist together with a part of the new MDT

-> Recovery algorithm should avoid these loops
Conditions for transient loops

Loops occur:

- when one node has to send both a *Join* and a *Prune* for the same MDT in different directions
- if topological change implies that downstream node of a failed node will become an upstream node

 ≡ if a path from the failed node toward the source/RP on new topology traverses a prior downstream node
- when distance from downstream node (i.e. node B) to its parent node traversed by the MDT in direction of source/RP (i.e. node A) in the old topology is higher than the same distance in the new topology:

 \[d(A,B)_{\text{new}} < d(A,B)_{\text{old}} \]
Check Procedures

• List the nodes that will be traversed by the Join message in the new topology from the failed node (node B)

• Check cycles of size n, n-1, ..., 1 (leads to cycle detection scheme)
Example

- Cycle of size 2 if
 - node A sends Join to node B
 - node B treats the Join message and stored corr. entry in its MRIB/MFIB
 - node B has not sent Prune message yet or if node A has not yet treated Prune message sent by node B

Then, the two MDT (old and new one) coexist for a period

- Mitigation: send first Prune msg to ensure that the part of the old MDT will be removed first (BBM)