Make TCP more Robust to Long Connectivity Disruptions

Alexander Zimmermann and Arnd Hannemann

Department of Computer Science, Informatik 4 RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

75th IETF TCPM Meeting - Stockholm, Sweden July 26, 2009

Alexander Zimmermann and Arnd Hannemann

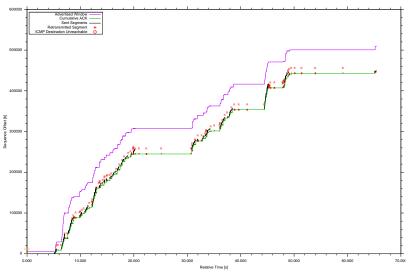
Changes from previous draft version

draft-zimmermann-tcp-lcd-00

- Miscellaneous editorial changes in Section 1, 2 and 3
- Section 2: Updated motivation for the algorithm
 ⇒ Congestion versus Non-Congestion Events/Loss
 ⇒ In-line with RFC "Improving the Robustness of TCP to Non-Congestion Events" [RFC4653]
- Section 4.1: Add basic idea of the algorithm
- Section 4.2: Update algorithm (suggestions Tim Shepard)
 - Special case of the first received ICMP destination unreachable after an RTO could be removed
 - "Backoff_cnt" variable was introduced so it is no longer possible to perform more reverts than backoff
- Section 4.3: Expanded according to the algorithm changes

Problem of Long Connectivity Disruptions (1/2)

Observation


 Disruptions in e2e path connectivity which last longer than one RTO cause suboptimal TCP performance

Problem statement

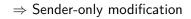
- ► TCP interprets segment loss as a sign of congestion ⇒ Means to detect loss: DUPACKs and RTO
- RTO case: (repeated) backoff(s) of the retransmission timer
- Deferred detection of connection re-establishment since TCP has to wait until next RTO before retransmit again

Problem of Long Connectivity Disruptions (2/2)

200

RWTH Aachen University

Alexander Zimmermann and Arnd Hannemann


Solution for Long Connectivity Disruptions

Disruption Indication

- Disambiguate true congestion loss from non-congestion loss caused by long connectivity disruptions
- Exploit standard ICMP destination unreachable messages during timeout-based loss recovery

Disruption Reaction

- Connectivity disruption loss: undoing one RTO backoff if an ICMP unreachable message reports on a lost retransmission
 ⇒ Enables prompt detection when connectivity is restored
- ► Congestion loss: Retaining std. timeout-based loss recovery

Connectivity Disruption Indication

Queue of the router experiencing the link outage is

- Deep enough: buffers all incoming packets
 ⇒ Cause only variation in delay
 ⇒ Eifel [RFC3522], F-RTO [RFC4138]
- ► Not deep enough: drops packets; discards according route ⇒ TCP sender is notified about the dropped packets via ICMP destination unreachable messages [RFC1812]

Idea

 Interpret ICMP unreachable messages of code 0 (net unreachable) or code 1 (host unreachable) as long connectivity disruption indication

ICMP messages as Connectivity Disruptions Indication

Issues

- Do not ignore congestion indication from the network
- ICMP messages do not necessarily operate on the same timescale as the packets eliciting them [RFC1812]
- ► ICMP messages are subject to rate limiting [RFC1812]

Useful

▶ ICMP unreachable messages contain the IP header of the datagram eliciting the ICMP messages plus the first 64 bit of the payload [RFC0791]

 \Rightarrow Allows to identify which segment of the respective connection triggered the ICMP unreachable message

Connectivity Disruption Reaction

Goal

- Prompt detection of the end of the connectivity disruption
- Retaining appropriate behavior in case of congestion

Basic Idea

- Increase the TCP's retransmission frequency by undoing one RTO backoff if ICMP message reports on a presumably lost retransmission
- If either the (re-)transmission itself, or the corresponding ICMP message is dropped the backoff is performed

The Algorithm (1/2)

State: retransmission timer is expired

- 1. Initialize backoff counter:
 - Backoff_cnt := 0
- 2. Placeholder for standard TCP timeout-based loss recovery
 - ▶ In particular RFC 2988 steps (5.4) (5.6) go here
- 3. If RTO was backed off in step 2, then:
 - Backoff_cnt := Backoff_cnt + 1
- 4. Wait either for
 - RTO, then Goto 2
 - ACK, then Goto 9
 - ICMP unreachable, then Goto 5
- 5. If $Backoff_cnt \ge 0$, i.e., if an undoing of the last RTO backoff is allowed, then Goto 6, else Goto4

The Algorithm (2/2)

- 6. Extract TCP segment included in ICMP unreachable:
 - SEG := Extract(ICMP_DU)
- 7. If SEG.SEQ == SND.UNA, i.e., ICMP_DU reports on the oldest outstanding segment, undo last RTO backoff:
 - ▶ RTO := RTO/2
 - Backoff_cnt := Backoff_cnt 1
- 8. If the RTO expires due to undoing in step 7, then Goto 2, else Goto 4
- 9. Placeholder for standard TCP behavior when an ACK has arrived; no further processing

Methodology

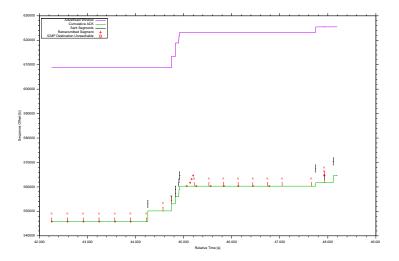
Code


- Algorithm is implemented in Linux 2.6.28.7
- Publicly available: http://www.umic-mesh.net/downloads

Setup

- \blacktriangleright Wireless mesh network with 51 nodes
- Routing protocol: OLSR [RFC3626]; standard parameter
- Path length: 2 to 4 hops
- Two parallel flows: standard and patched
- ▶ 60 s bulk TCP transfer; 500 measurements

Evaluation (1/3)

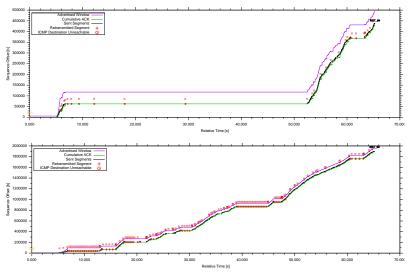


200

RWTH Aachen University

Alexander Zimmermann and Arnd Hannemann

Evaluation (2/3)



200

RWTH Aachen University

Alexander Zimmermann and Arnd Hannemann

Evaluation (3/3)

500

RWTH Aachen University

Alexander Zimmermann and Arnd Hannemann

We ...

- React only on ICMP unreachable messages during timeout-based loss recovery that reporting on SND.UNA
- Fall back to usual backoff in case there is congestion along the path after connectivity is restored
- Modify only the sender \Rightarrow Easy to implement

We do not

- Alter TCP's behavior in case of
 - slow-start, steady-state or fast recovery
 - ▶ timeout-based loss recovery with CWND > 1
 - no receiving ICMP unreachable messages
- Probe for route repair faster than slowest TCP can send

Special cases

Retransmission ambiguity problem

No problem since the assumption that the ICMP message provides evidence that one link loss was wrongly considered as congestion loss is still true

Wrapped sequence numbers

- Late ICMP unreachable message reporting on an old error may coincidentally fit as input
- Possibility is minuscule, since ICMP message must contain the exact sequence number of SND.UNA, while at the same TCP is in timeout-based loss recovery

Next steps

Any interest from the WG?

RWTH Aachen University

Alexander Zimmermann and Arnd Hannemann