
MashSSL
Quick Summary

Ravi Ganesan
SafeMashups Inc.

ravi@safemashups.com
www.safemashups.com

Siddharth Bajaj
VeriSign Inc.

sbajaj@verisign.com
www.verisign.com

info@mashssl.org
www.mashssl.org

mailto:ravi@safemashups.com�
http://www.safemashups.com/�
mailto:sbajaj@verisign.com�
http://www.findravi.com/�
http://www.safemashups.com/�
http://www.mashssl.org/�
http://www.mashssl.org/�

www.mashssl.org

• Why do we need a new security standard

• Why is it preferable to start with TLS

• What is MashSSL

• How MashSSL and TLS work together

• Some MashSSL innovations that TLS might want to consider

• Towards standardization…

• Back up slides

Outline

2

www.mashssl.org

Why MashSSL: An Example

• Site A “talks” through Alice to various other sites…
• Site B provides a payment button.
• Site C acts as Identity Provider using OpenID
• Site D is an OAuth Service Provider to Site A
• Site E wants to accept cross domain XHR request from Site A
• And so on….web experiences are increasingly mashups…

•But Alice could be Evil Eve! How do sites authenticate each other via browser?

• Today for each problem different underlying crypto protocols are ginned up and
credentials distributed. Site A has crypto s/w and credential management headache!

Would be nice if we could build standard secure pipe from site to browser to site.
3

www.mashssl.org

• Pros:
– New protocols take years to mature.
– TLS handshake is probably the world’s most carefully studied

mutual authentication and key exchange protocol.
– Very efficient: Only initial handshake needs PKI processing.
– Trust infrastructure exists (get and manage SSL certificates)

• Cons:
– TLS does not allow MITMs. Our problem is multi-party.
– TLS usually runs over TCP. For us the “transport” is HTTP.
– TLS (for very good reason) is large and complex. World seems

to want simple RESTful protocol…

Very powerful “pros” suggest we start with TLS, and try and
address the “cons”.

Why start with TLS?

4

www.mashssl.org

• Introduces concept of “friend in the middle” to make
TLS multi-party.

• Takes RFC 5246 handshake messages and exchanges
them as name value pairs over HTTP via browser.

• Only implements core subset of TLS (e.g. no renego!) to
keep it simple.

• In general never defines something already defined in
RFC 5246 and simply points to it. For example:
– server_hello.certificate.certificate_list

• The Server’s certificate with the chain up until or including the root. The certificate must make sense

in the context of the cipher-suite chosen. Further reference: RFC 5246, Page 46.

MashSSL in a nutshell

5

www.mashssl.org

MashSSL in a picture

MashSSL Web Toolkit MashSSL Web Toolkit

Standard SSL cert Standard SSL cert

Absolutely no change at
user-agent, no add-ons,

downloads, etc.

Result: Secure pipe between two web apps over which any
“mashup protocol” can be run.

6

www.mashssl.org

MashSSL and TLS

• Likely scenario:
– Two independent TLS sessions over TCP pipes
– Over which are two independent HTTP sessions
– Over which is overlaid a MashSSL pipe
– On top of which one can run OAUth, OpenID, cdXHR, etc.

7

www.mashssl.org

• It is expected that web apps will do MashSSL:
– “full handshake” occasionally (say once a day) directly

between themselves.
– “abbreviated handshake” (aka resume) through user browsers
– PKI operations only once a day!

• For this we have defined 2-legged MashSSL
– Which could as easily run between browser and a server.
– 2-legged MashSSL is kind of a HTTP binding for TLS.
– Lots of advantages to authenticate and encrypt at Layer 7

(performance, avoid mobile gateway MITMs, etc.)
• HTTP is inherently request response:

– So MashSSL handshakes end up requiring two round trips.
– MashSSL will have a single round trip optimization a Server

can choose to accept (or not). This could be added to TLS. (see
http://www.ietf.org/mail-archive/web/tls/current/msg05728.html)

Some aspects useful for TLS?

8

http://www.ietf.org/mail-archive/web/tls/current/msg05728.html�
http://www.ietf.org/mail-archive/web/tls/current/msg05728.html�

www.mashssl.org

• For current specification and open source software
please visit MashSSL Alliance site: www.mashssl.org

• Have formed W3C Incubator:
www.w3.org/2005/Incubator/MashSSL

• Welcome participation from all!

Thank you!

(back up slides follow)

Towards standardization

9

http://www.mashssl.org/�
http://www.w3.org/2005/Incubator/MashSSL�

www.mashssl.org

SSL revisited

SSL protocol is widely used and trusted. Ability to reuse session without repeating
PKI operations. Trust infrastructure CAs already exist. And is constantly being

improved (TLS 1.2, EV certs). Many mashup apps already have SSL certs!

sessionID, R1

R2, server_certificate, client_authentication_request

encrypt(R3,server_public_key), sign(rhash, client_private_key), client_certificate, client.verify

server.verify

CLIENT
SERVER

A conceptual view of the SSL handshake in the case where both parties
have digital certificates and will mutually authenticate. After the four
messages, both sides can encrypt data using a shared master_secret

which is derived from R1, R2 and R3.

encrypt(data, master_secret)

Client Cert Server Cert

10

www.mashssl.org

SSL revisited

And, it is believed that the protocol is secure even in the presence of one or more
MITM(s). One of the strongest claims one can make of a crypto protocol!

sessionID, R1

R2, server_certificate, client_authentication_request

encrypt(R3,server_public_key), sign(rhash, client_private_key), client_certificate, client.verify

server.verify

CLIENT
SERVER

A conceptual view of the SSL handshake in the case where both parties
have digital certificates and will mutually authenticate. After the four
messages, both sides can encrypt data using a shared master_secret

which is derived from R1, R2 and R3.

encrypt(data, master_secret)

Client Cert Server Cert

11

www.mashssl.org

Lets ask for the impossible…

sessionID, R1

R2, server_certificate, client_authentication_request

encrypt(R3,server_public_key), sign(rhash, client_private_key), client_certificate, client.verify

server.verify

CLIENT
SERVER

A conceptual view of the SSL handshake in the case where both parties
have digital certificates and will mutually authenticate. After the four
messages, both sides can encrypt data using a shared master_secret

which is derived from R1, R2 and R3.

encrypt(data, master_secret)

Client Cert Server Cert

Can we insert MITMs that manipulate protocol messages, but which
1. Allow successful execution of protocol
2. Do not compromise underlying security of protocol

The very surprising non-intuitive answer is: YES WE CAN!

12

www.mashssl.org

The impossible becomes possible if…

the changes the MITMs make cancel each other out en route!
Example:
• CLIENT sends random number R1. MITM-LEFT adds 100.
• MITM-Center subtracts 50. MITM-Right subtracts another 50.
• SERVER receives original random number R1!

• So of what possible practical use is this insight???

sessionID, R1

R2, server_certificate, client_authentication_request

encrypt(R3,server_public_key), sign(rhash, client_private_key), client_certificate, client.verify

server.verify

CLIENT
SERVER

encrypt(data, master_secret)

Client Cert Server Cert

LEFT CENTER RIGHT

13

www.mashssl.org

Introducing MashSSL

MashSSL uses the browser as a “friend in the middle”. The two web apps
generate SSL messages, then manipulate (scramble) them such that only
Alice at her browser can unscramble them before reaching the other side.

14

www.mashssl.org

Introducing MashSSL

And, if they subsequently do mashup for another user Fran they simply use
the SSL abbreviated handshake which avoids repeating the PKI operations.
(Note in practice the web apps can do 2-legged MashSSL for full handshake)

15

www.mashssl.org

How to scramble in MashSSL?

• Hundred of links in Google for “recipes for
scrambled eggs” !

• Similarly methods for scrambling in MashSSL
are endless

• Like with scrambled eggs not all results will
be tasty! See white paper for guidelines on
security.
(https://www.safemashups.com/download
s/MashSSL_Towards_Multi_Party_Trust_i
n_the_Internet.pdf)

• E.g. can use any existing authentication
method: passwords, OTPs, smartcards, etc.

• Can even ‘scramble virtually’ if user is
already logged in and a session cookie
identifies session. 16

https://www.safemashups.com/downloads/MashSSL_Towards_Multi_Party_Trust_in_the_Internet.pdf�
https://www.safemashups.com/downloads/MashSSL_Towards_Multi_Party_Trust_in_the_Internet.pdf�
https://www.safemashups.com/downloads/MashSSL_Towards_Multi_Party_Trust_in_the_Internet.pdf�

www.mashssl.org

How does MashSSL stack up?
1. Single solution for all situations where problem manifests.

• MashSSL is a fundamental Internet building block that has countless uses.

2. Lightweight RESTful application level protocol (HTTP).
• Standard defined in simple RESTful fashion.

3. No new crypto protocol please. Takes up to a decade to build trust.
• Reuses SSL. Reuses whatever authentication is in place for scrambling.

4. Trust browser as little as possible.
• Browser cannot spoof either web application!

5. Don’t ask us to get and manage new credentials from new authorities.
• Standard SSL certificates can be used.

6. Don’t use user authentication as proxy for B2B authentication.
• Web applications authenticating each other (through browser)

7. Think scale. Do not repeat expensive PKI operations.
• Reuses SSL abbreviated handshake to avoid repeating PKI operations.

17

	MashSSL�Quick Summary
	Outline
	Why MashSSL: An Example
	Why start with TLS?
	MashSSL in a nutshell
	MashSSL in a picture
	MashSSL and TLS
	Some aspects useful for TLS?
	Towards standardization
	SSL revisited
	SSL revisited
	Lets ask for the impossible…
	The impossible becomes possible if…
	Introducing MashSSL
	Introducing MashSSL
	How to scramble in MashSSL?
	How does MashSSL stack up?

