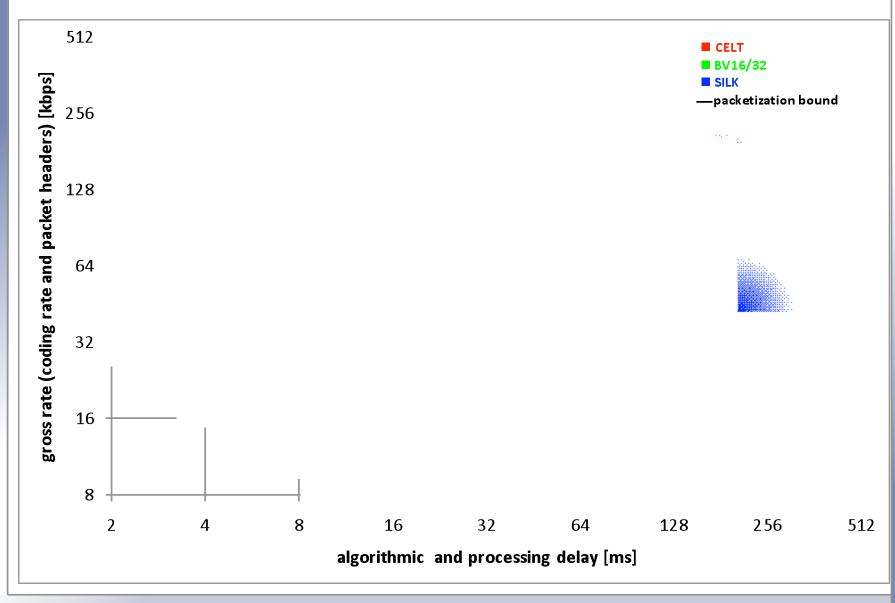
Interactive Communication Systems (ICS) EBERHARD KARLS UNIVERSITÄT Wilhelm-Schickard Institute - Dr. Christian Hoene TÜBINGEN

Rate Adaptation for the IETF IIAC

Patrick Schreiner, Christian Hoene

Universität Tübingen WSI-ICS 26. July 2010


© 2010 Universität Tübingen, WSI-ICS

- The IIAC is likely to have many parameters:
 - 1. Coding rate (kbit/s)
 - 2. Sampling rate (kHz)
 - 3. Packet length (ms)
 - 4. DTX/VAD/music/speech mode
 - 5. Complexity
 - 6. Look-ahead (ms)
 - 7. Channels (x)
- The IIAC will have a broad range of operation
 - o 8 till 192*x kbit/s
 - o 8 till 48 kHz
 - o 2 till 160ms delay
- Many different devices
- o Many different link qualities on the Internet

Problem: When to set which codec parameter how?

Operational Range of Contributed Codecs

Rate Adaptation for the IETF IIAC

Many different platforms (and interests)

		CPU	DSP	RAM	ROM	Example	OS	
						device	03	Capacity
End device	PC	>2 GHz (i386 or x64)	-	> 2 GB	HD	-	Windows, Linux	ca. 100 ?
	Phone	ARM11, 500 MHz		192 MB	256 MB	HTC Dream, MSM7201A	iPhone, Android	ca. 10?
	VoIP Phone	275-MHz MIPS32 CPU	125-MHz ZSP DSP	>1 MB external	>1 MB external	BCM1103	Linux	2 to 3'?
Gateway	PC based	two Xeon dual core, 2.33 GHz	-	4 GB	HD	Asterisk v1.4.11	Linux	400 calls with G.711 to G.729
	Intel server based	two 4/6 core Xeon	-	12 GB	HD	IVR and conference server	Linux	400 to 10,000
	High density		six TI C64x +™ DSP	5,5 MB +external RAM	?	TNETV3020	Telogy Software	AMR 6*216, G.711 6*504
	Spatial Audio	>2 GHz (i386 or x64)	-	> 2 GB	HD	research prototypes	Linux	hardly 1

Goal: Optimize Quality of Experience

○ ITU-T P.10/G.100 defines "Quality of Experience"

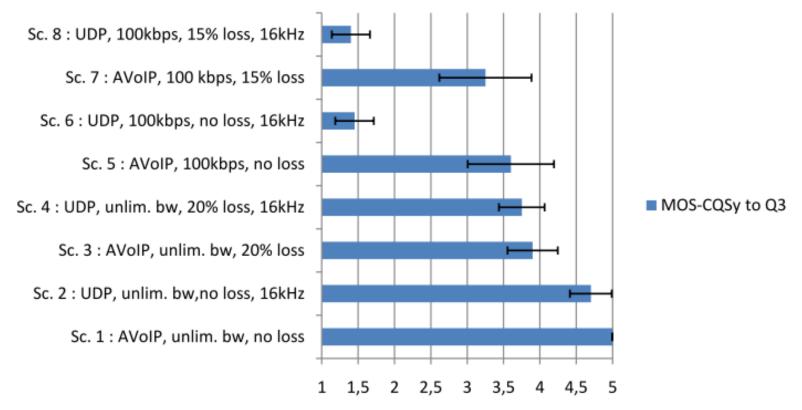
The overall acceptability of an application or ser-vice, as perceived subjectively by the end-user.

• Extension at ITU-T G.RQAM

Quality of experience includes the complete end-to-end system effects (client, terminal, network, services infrastructure, etc.). Overall acceptability may be influenced by user expectations and context.

Promoting the use of DCCP instead of UDP

- Offering congestion control and fairness like TCP
 but fast delivery (no retransmissions)
- Easy application interface
 - $\odot\,$ API gives you currently available TX rate and RTT
- o Implementations available
 - o user-space and Linux kernel
- Supports variable packet sizes
 - o important for VoIP
- o Does DCCP solve all problems?
 - o Highly variable bw feedback
 - No feedback on month-to-ear delay
 - ${\rm o}$ which is important for QoE
 - No feedback on computational latency
 - \odot Which important for predicting MtE delay and for low cost devices



- o Master Thesis of Patrick Schneider
- Implemented DCCP+SBC+PLC
 - o (SBC as replacement for a not yet existing IIAC)
- o Supporting
 - Rate control without difficulties
 (Optimal parameter selection is not yet achievable)
- Switches to Push-To-Talk mode
 - $\circ\,$ if link speed falls below gross coding rate
- $\circ\,$ We conducted conversational-tests comparing
 - UDP+packet loss
 - o DCCP+Push To Talk

Research Results

Q3: "What level of effort did you need to understand what the other person was telling you? "

- o Using SBC mono with 16 to 48 kHz
- o Using a network simulator for bw limits and addit. losses
- AVoIP refers to DCCP plus Push to Talk mode

Summary

- IIAC+RTP+DCCP is useful combination
 - o make thinks easier
- but need protocol support for QoE control loop
 - o month-to-ear delay (when frame have been play out)
 - o feedback on complexity (computational delay)
 - o in RTP payload, RTCP-XR, or RTP header extensions?
- Vendor specific optimizations on parameter trade-off shall be possible
 - o to adapt to different user needs
 - o to find an "optimal" solution in respect to QoE
 - o to cope with DCCP's highly variable rate feedback
- Push-To-Talk mode helps
 - o for low bandwidth lines
 - o also for short handover interruptions