Analysis of Security Association for Current Routing Protocol

draft-wei-karp-analysis-rp-sa-00

IETF78, Maastricht, Netherlands July, 2010

Yinxing Wei, ZTE Corporation wei.yinxing@zte.com.cn

Motivation

Goal of KARP WG

 KARP aims to improve the communication security of the packets on the wire used by the routing protocols

Current State

- Security Association (SA) is the basis for protecting the packet of routing protocol, e.g., message authentication, integrity protection
- Many routing protocols have already defined their own SAs
- ➤ This document analyzes the SA of several routing protocols, i.e., RIPv2, OSPFv2, ISIS, BFD, and BGP

Our Work

Briefly overview of existing SAs of routing protocols

Compare typical fields of those SAs

 Identify potential issue and discuss possible approaches

Overview of SA fields

	Key Identifier	Algorithms	Key	Life Time	Sequence Number	KDF
RIPv2		V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
OSPFv2	V	√	V	√	V	
ISIS	V	V	V			
BFD	V	V	V		V	
BGP		V	V		V	V

Table 1 – Key identifier

Routing Protocol	Name of Key ID	Length of Key ID	
RIPv2	Key Identifier	8 bits	
OSPFv2	Key Identifier	8 bits	
ISIS	Key Identifier	2 octets	
BFD	Authentication Key Identifier	2 octets	
BGP	KeyID	8 bits	

Table 2 – Algorithms and Key Length

Routing Protocol	Algorithms	Key Length
RIPv2	KEYED-MD5, HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	variable
OSPFv2	Keyed-MD5, HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	variable
ISIS	HMAC-MD5, HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	variable
BFD	Keyed MD5, Keyed SHA-1, HMAC-SHA-1, HMAC- SHA-256, HMAC-SHA-384, HMAC-SHA-512	variable
BGP	Keyed MD5, HMAC-SHA-1-96, AES-128-CMAC-96	variable

Table 3 – Life Time

Routing Protocol	Fields	
RIPv2	Start Time, Stop Time	
OSPFv2	Key Start Accept, Key Start Generate, Key Stop Generate, Key Stop Accept	
ISIS	None	
BFD	None	
BGP	None	

Table 4 – Sequence number

Routing Protocol	Length of Sequence number
RIPv2	32bits
OSPFv2	32bits
ISIS	None
BFD	32bits
BGP	32bits

Issues and Approaches

Issues

- The diversity of routing protocol SA
- May impact on the design of KARP framework or KMP protocol

Possible Approaches - generic SA (gSA)?

- Pros
 - A bridge between manual configuration or KMP protocol and routing protocol
 - A unified interface to manual configuration or KMP protocol
 - Decouple KMP with routing protocol
 - KMP and routing protocol can be evolved independently
 - The complexity of the design of KMP is greatly reduced

Cons

A new layer is added, which produces extra cost

Next Step

Take IPsec SA into account

Adopted as a WG draft?