

Enhanced Efficiency of Mapping Distribution Protocols in Scalable Routing and Addressing Architectures

K. Sriram, Patrick Gleichmann, Young-Tak Kim, and Doug Montgomery

July 2010

National Institute of Standards and Technology

Contact: ksriram@nist.gov

Acknowledgement: Thanks to Dino Farinacci, Lixia Zhang, Joel Halpern, and Robin Whittle for their helpful comments and suggestions.

This research was supported by the Department of Homeland Security under the Secure Protocols for the Routing Infrastructure (SPRI) program and the NIST Information Technology Laboratory Cyber and Network Security Program.

Background

- This work was originally presented in RRG in July 2007 at the Dublin IETF Meeting.
- A revised version was presented at the IETF LISP WG meeting in March 2010. This current version reflects revisions based on feedback from that meeting.
- Slides 6, 8, 9, and 14-17 have new or significantly revised material.
- Detailed updated document is at:

http://www.antd.nist.gov/~ksriram/EEMDP_ICCCN2010.pdf

Overview of Map and Encap Solution

Managing Holes in Maps (Preview)

Real-World Example: Hole in a PI Address

		_	
	Announced in BGP-4:		
Aggregate	129.6.0.0/17	Origin: AS49	
More Specific	129.6.112.0/24	Origin: AS10886	
	EID to Locator Mapping:		
	EID:	ETR (equivalent)	
	129.6.112.0/24	ETR10886	
	129.6.113.0/24	ETR49	
	129.6.114.0/23	ETR49	
	129.6.116.0/22	ETR49	
	129.6.120.0/21	ETR49	
	129.6.96.0/20	ETR49	
	129.6.64.0/19	ETR49	
	129.6.0.0/18	ETR49	

Proliferation of Map Entries

Measurement of # Prefix Holes

Subprefix Length (x)

Based on Routeviews RIBs trace data – Feb 2010

Avg. Map Multiplication Factor Due to Holes

Measurement of Proliferation of Maps

Total # Extra Maps in Database = 510508 (Approx.)

(w/o the proposed EEMDP solution) Details of the Proposed Algorithm: Enhanced Efficiency of Mapping Distribution Protocols (EEMDP)

Case 1: More-Specifics (Holes) Absent

Case 2: All More-Specifics Communicated

Case 3: Exception More-Specific Communicated without ETR Info (Lots of Mobile Nodes)

Case 4: Prioritized Subset of Maps for Exception More-**Specifics Are Communicated**

Conceptual Format for the Enhanced Map Response

Prefix	ETR	MS	К	NE	More Specific	More Specific		More Specific
					Map 1	Map 2		Map K

MS = More Specific indicator

- K = # Maps to follow
- NE = Number of Exceptions (NE \geq K)

If for a more specific prefix, ETR = RR, it means ITR needs to query (Re-Request) for destination EID in that more-specific prefix

Algorithm Description

More Specific Indicator (MS)	# Exception Maps Included (K)	Total # Exceptions (NE)	Interpretation
00	0	0	Map response has no exceptions.
01	k	n _e = <i>k</i>	Map response has exceptions; All k map responses for the exception subnets are included.
10	k	n _e = <i>k</i>	Map response has exceptions; All k map responses for the exception subnets are included but the ETR information for one or more specific subnets is "Re-request"; Subnets are further split into micro-subnets (e.g., mobile devices homed to different ETRs).
11	k (k < n _e)	n _e	Map response has exceptions; # Exceptions exceeds threshold (H); Only a subset of exception maps is included; Maps for prioritized (frequently requested) subset of more specifics are included.

Comparison of Max # Map Responses Attributable to Holes w/o and with EEMDP

Reduction achieved with EEMDP = 90%600000 **Communicated due to Holes** Max # Map Responses 500000 400000 300000 200000 100000 0 Map-n-Encap w/o EEMDP Map-n-Encap with EEMDP

Endpoint ID Aggregation at ETRs

Conclusions and Future Work

- Holes in ID-to-locator maps cause undesirable map proliferations
- Significant reduction in map entries and map query/response traffic load is possible with the proposed EEMDP scheme
- Substantial reduction in load on ITR's memory and processor
- More accurate quantification of benefits can be performed
- Also introduced the notion of a loose hierarchy of ETRs with the potential benefit of aggregation of their EID address spaces