

### Comparison and Analysis of Secure Mobile Architecture and Evolved Packet System

Jani Pellikka, Marek Skowron, Andrei Gurtov

www.cwc.oulu.fi

#### Motivation

- Two separate worlds of protocol development
  - IETF and 3GPP
- 3GPP moves towards all-IP in LTE specs
  - IP Mobility, security, IPv4/6
- Currently 3GPP uses standard-track protocols
  - DSMIPv6, PMIPv6, IKEv2, MOBIKE
- Can HIP be a useful solution in 3GPP?
  - OpenGroup Secure Mobile Architecture vs. Evolved Packet Core (EPC) by 3GPP
  - Compare and find pros and cons of both worlds
  - Propose a common way forward

## Evolved Packet System (EPS) (1/2)

Realizes a common all-IP framework for voice and data

- High-performance core network: Evolved Packet Core (EPC)
- Offers connectivity to various Packet Data Networks (PDNs)
- Multiple heterogeneous Radio Access Technologies (RATs)
  - WiFi, WiMAX, HRPD, LTE, LTE-A, ...
- Two primary gateways: S-GW and PDN GW
  - S-GW provides access for LTE-based mobile devices
  - PDN GW connects external IP networks (e.g. Internet and non-3GPP services) with the core network (EPC)
  - Both gateways act as an anchor point in mobility:
    - Intra-LTE mobility (S-GW)
    - IP mobility (PDN GW)
- Voice services realized via IP Multimedia Subsystem (IMS)
  - Voice over IP (VoIP) support and cooperation with PSTNs
  - Use of Session Initiation Protocol (SIP) in signaling
- Location services provided by Location Services (LCS)
  - Centralized entity provides clients with location (e.g. coordinates)
  - Possibility to define custom logical areas based geographical location

### Evolved Packet System (EPS) (2/2)

Network access security provides secure access to EPS

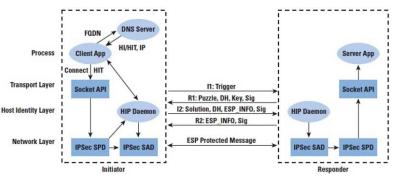
- 3GPP-based mutual authorization and authentication
- Use of EPS AKA and EAP AKA allows AAA features with the same credentials regardless of the access technology used
- IP traffic protection used for non-trusted non-3GPP accesses
  - IPSec ESP tunnels established between UE and PDN GW (ePDN)
  - Security Associations (SAs) negotiated by the IKEv2 protocol
- IP mobility based upon two Mobile IP (MIP) schemes
  - Host-based mobility by Dual Stack MIPv6 (DSMIPv6)
  - Network-based mobility via Proxy Mobile IP (PMIPv6)
  - Route Optimization (RO) not supported by EPS
  - PDN GW or other network node near the EPC border acts as a Home Agent (HA) for the mobile host
- Policy and Charging Control (PCC)
  - Session-level policies enforced by the network gateways
  - User-specific policies based on profile information and decided by centralized Policy and Charging Rules Function (PCRF)

# CWC

#### Secure Mobile Architecture (1/2)

- Addresses business needs of having a secure network connection over disparate wireless technologies and a capability of seamless roaming between them
- Standardization effort of The Open Group (TOG)
  - Integration architecture of Internet and roaming protocols
  - Vision of how wireless systems need and can be secure
  - Existing and emerging standards from IETF and IEEE
- Security based on Host Identity (HI) not IP address
  - The IP layer is treated as an insecure transport layer
  - Each and every packet is associated with an identity
  - Host Identity Protocol (HIP) provides cryptographic HIs
  - End-to-end security enforced by the network




#### Secure Mobile Architecture (2/2)

- Treats multimedia merely as an IP-based application
  - Addresses VoIP traffic
  - Voice and multimedia signaled and carried over the IP transport
  - Use of UDP and SIP
- Design principles in short
  - 1. Use of IP protocol
  - 2. IP-level security
  - 3. Seamless mobility
  - 4. Policy enforcement
  - 5. Security zones

| Description | Principles                                           |
|-------------|------------------------------------------------------|
| IP-only     | Only IP is addressed. The IP protocol is assumed     |
|             | to be the future protocol most data and voice are    |
|             | carried over with in the Internet.                   |
| Security    | Security is based on the host identity instead of    |
|             | IP and MAC addresses. Authentication, autho-         |
|             | rization, and encryption are guaranteed between      |
|             | the end points of communication. The security        |
|             | of the user is provided on the basis of commu-       |
|             | nication session.                                    |
| Mobility    | Mobile device is able to seamlessly and trans-       |
|             | parently migrate across disparate network tech-      |
|             | nologies, while maintaining the ongoing com-         |
|             | munication sessions and established security pa-     |
|             | rameters. Hand-offs and transfers must be fast       |
|             | enough for VoIP traffic.                             |
| Policy      | There is a policy engine, which determines poli-     |
| Enforcement | cies and employs them based on predefined rules      |
|             | for attributes such as user role and location. Poli- |
|             | cies can be enforced at network and application      |
|             | level.                                               |
| Location    | Location information is utilized to enable secu-     |
|             | rity zones. Host authorization is managed by the     |
|             | policy engine, which decides to deny or grant        |
|             | service to hosts based on their current location.    |

## Host Identity Protocol (HIP)

- Host identified by cryptographic identity
  - Implements the ID/locator split scheme
  - Public/private key pair as host identifier
  - Host Identity Tag (HIT) used by apps
- Authentication over Internet protocols
  - Mutual authentication via public keys
  - Opportunistic negotiation of SA pairs
  - Data protected over ESP (SPI as flow ID)



A. Gurtov, M. Komu, R. Moskowitz, Host Identity Protocol (HIP) : Identifier/Locator Split for Host Mobility and Multihoming, Internet Protocol Journal, 12(1): 27-32, March 2009.

- Support for host mobility and multihoming
  - Mobility events handled via HIP UPDATE messages (part of IP stack)
  - Additional infrastructure to aid host tracking and reachability needed, e.g. dynamic DNS, Rendezvous Server (SRV) park or/and a fully distributed DHT-based Hi<sup>3</sup> system
  - ID/locator split enables seamless interoperability between the IPv4 and IPv6 applications and multihoming between the IPv4 and Ipv6 interfaces assigned to a host

#### Comparison of the Architectures (1/2)

#### IP-Only

- Both are in alignment with the all-IP paradigm
- Address VoIP applications and SIP-based signaling
- Both support IPv4 and IPv6 protocol interoperability
  - HIP in SMA allows for seamless simultaneous use of interfaces (multihoming) of both protocol families
  - EPS allows IPv4 and IPv6 applications to communicate with each other through the use of DSMIPv6 scheme; no support for simultaneous use between IPv4/6 addresses
- Security
  - Mutual AKA-based authentication (pre-shared symmetric key) in EPS VS.
    HIP's asymmetric public/private key-based mutual authentication in SMA
  - HIP requires an additional Public Key Infrastructure (PKI) to guarantee the identities; in EPS, the possession of the shared secret is enough
  - EPS = end-to-middle security, SMA = end-to-end security
  - Both secure control and user plane traffic with IPSec ESP, and provide a similar degree of security against DoS and MitM attacks
  - In EPS, MOBIKE maintains SAs in mobility, but only one pair of IP addresses allowed for an SA at a time (i.e. no simultaneous multihoming)
  - Standard HIP has no support for identity privacy; extensions exist

## CWC

#### Comparison of the Architectures (2/2)

#### IP Mobility

- SMA relies on HIP combined with a seamless handover mechanism, e.g. a Context Transfer Protocol (CTP) and dynamic DNS (or other real-time database infrastructure) for host tracking and reachability
- EPS relies on MIP-based schemes, which suffer from a scalability problem due to the suboptimal routing of user traffic
- Mobility through SIP possible in both architectures; in SMA HIP is combined with SIP for complimentary mobility (i.e. host mobility handled by HIP, user and session mobility handled by SIP)
- Location-based Security Zones and Policy Enforcement
  - EPS includes support for network enforced policy control, but does not take geographical location information into account *per se*
  - EPS provides a means for defining logical and geographical zones via LCS, but is not currently utilized in the policy enforcement
  - $\rightarrow$  A communication between LCS and PCRF need to be realized
  - $\rightarrow$  A storage and decision logic for the policy rules on security zones

# CWC

#### **Conclusions and Future Work**

- EPS and SMA provides security of roughly the same degree; however more scalable authentication can be realized if HIP is combined with PKI and support for identity privacy is included
- SMA is able to provide more efficient and scalable mobility with simultaneous multihoming with both IPv4 and IPv6 addresses
  - EPS has no support for the business need of location-based security zones and policy enforcement by default, but it can be implemented as all required components are already in place
- Future work includes studying possible issues in integrating the two architectures and building a convergent EPS-SMA system; also the joint use of HIP and SIP is investigated

#### Thank you!