
Secure Naming structure and p2p
application interaction

IETF - PPSP WG
November 2010

Ove Strandberg, Börje Ohlman,
Teemu Rautio and Christian Dannewitz

P2P data identification challenges

� Identification of the same data at different location require
knowledge of multiple data IDs (host centric addressing)

� Streaming application have their own identification system
– Hard to use same data between different p2p application

11/11/2010 WPx/Slide 3

Traditional node centric networking

B

Server X

Trusted

Server

Secure

Connection

Connect to

Server X and

get object B

11/11/2010 WPx/Slide 4

Secure naming in PPSP network

A

C

D

E

B

A

B

E

A

C

B

A

D

E

A

D

B

Get object B

Trustable

copy of

object B

Untrusted

peer

Untrusted

connection

Secure naming & P2P application
interaction

� With self-certifying names, the data received is the data
requested in P2P system

� In today’s P2P system, no guarantee that the downloaded
content actually matches the expected/correct content
– Like forged torrent file and/or data file can be inserted

� Additions to P2P
– Extend torrent file with additional security metadata
– Generate torrent name along draft method

Draft changes -00 -> -01

New in -01 draft:
� Abstract updated
� Section 4. Application use of secure naming structure

– More details on bittorrent challenges
– Added figures, bittorrent and proposed additional security features
– Extensions to the info field of bittorrent file (figure 3)

• Hash function
• Digital signature algorithm
• Public key
• Data signed
• ID
• Signature (using private key)

– Details on ID name generation

BitTorrent file examples

+---------------------------------+---------------------------------+

| announce | info |

+---------------------------------+---------------------------------+

Figure 1: Basic structure of the BitTorrent torrent file

+-----------+--------------+-------------+------------+-------------+

| name | piece length | pieces | length | path (opt) |

+-----------+--------------+-------------+------------+-------------+

Figure 2: Structure of info field in torrent file

+-----------+--------------+-------------+------------+-------------+

| name | piece length | pieces | length | path (opt) |

+-----------+--------------+-------------+------------+-------------+

+----------------------+----------------------+---------------------+

| h | DSAlg | PK_D |

+----------------------+----------------------+---------------------+

+----------------------+----------------------+---------------------+

| certified pieces | signature | ID |

+----------------------+----------------------+---------------------+

Figure 3: Structure of Secure naming enabled info field in torrent

Summary and Conclusion

� Information-centric type of networks have inherent need for
secure naming scheme

� Secure naming structure combines features not available in
existing naming schemes

� Example of torrent changes
� Feasibility of secure naming demonstrated via prototyping:

– http://www.4ward-project.eu/
– http://www.sail-project.eu/
– http://www.netinf.org (open source site)

11/11/2010
© 4WARD Consortium Confidential

WPx/Slide 8

Thank you for your attention

11/11/2010 Slide 9

Background slide

Slide 11

Motivation: secure naming structure

Information-centric Internet
Dissemination of Information Objects

Information-centric abstraction
Today’s Internet

Conversations between Hosts
Host-centric abstraction

Evolution

� No common persistent naming scheme for Information
� Security is host-centric

� Mainly based on securing channels and trusting servers
� Can’t trust a copy received from an untrusted server

Secure naming characteristics

� Self certified ID
– using hash of data

� Name persistence, in spite of
– Location changes
– Content changes
– Owner changes
– Organizational changes

11/11/2010 Slide 12

Self-Certification

� Prevent unauthorized changes, ensure data integrity
– Important to support data retrieval from any available copy/source

� Static content
– Include hash(content) in ID Label field
– Advantage: no need to retrieve metadata
– Verification: compute hash(retrieved data) and compare to hash in ID

� Dynamic content
– Storing hash(dyn.content) in ID would violate ID persistence
– Store hash(content) in security metadata and sign with SKIO

– Verification:
• Verify that signature is correct and corresponds to PKIO

• Compute hash(retrieved data) and compare to hash in security metadata

11/11/2010 Slide 13

Naming Scheme Overview 1

11/11/2010 Slide 14

� Information Object (IO) = (ID, Data, Metadata)
� Each IO has an owner
� All equivalent copies have the same ID

– This might include different versions

Type A=Hash(PKIO) L={attributes}

Security Metadata

SKIO

Naming Scheme Overview 2

11/11/2010 Slide 15

� ID = (Type tag, Authenticator, Label)
– Type tag: mandatory, globally standardized

• Adapt naming scheme to named entity type

– Authenticator A: bind ID to PKIO

• Secure “ID – security metadata” binding
• (Original) owner authentication (see owner change)

– Label L: Arbitrary, ensure global uniqueness

� Security metadata
– All information required for embedded NetInf security features
– Securely bound to ID via PKIO/SKIO pair

Type A=Hash(PKIO) L={attributes}

Security Metadata

SKIO

Name Persistence

� Location change
– Based on ID/locator split
– ID dynamically bound to network location(s) via name resolution service

� Content change
– See self-certification

� Owner change
– PKIO/SKIO pair conceptually bound to IO, not owner
– Basic approach: PKIO/SKIO pair securely passed on to new owner

• Disadvantage: not robust with respect to SK disclosure
– Adv. approach: new owner uses new PK’/SK’ pair

• Sign metadata using the new PK’/SK’ pair
• Securely bind PK’/SK’ pair to ID via certificate chain

� Owner’s organizational change
– IDs are flat and do not reflect organizational structures

11/11/2010 Slide 16

PKorig
PKnew1

SKorig

PKnew1
PKlatest

SKnew1

Owner Authentication and Identification

� Owner authentication separated from data self-certification
– By allowing the corresponding PK/SK pairs to be different
– Owner authentication is possible even if multiple owners use the

same PK/SK pair for data self-certification
– More freedom in the choice of PK/SK pairs for data self-certification

� Owner authentication binds self-certified data to owner’s PK
– Include hashed owner’s PK in self-certified data and sign this data

with the corresponding SK (anonymous)
– Build up trust in (anonymous) owner by reusing PK for different IOs

� Owner identification: in addition, bind self-certified data to
owner’s real world identity
– Achieved like owner authentication, where owner’s PK and identity

data are included in self-certified data
– Owner’s PK and identity are bound by PK certificate issued by TTP

11/11/2010 Slide 17

Evaluation

� Java-based NetInf prototype
� Naming scheme proved easy to implement

– Based on established security mechanisms (encryption, digital sign.)

� Easy to integrate and use naming scheme in applications
– Built applications from scratch
– Extended existing applications (e.g., Firefox, Thunderbird)

� Example: Firefox plugin
– Interprets links containing NetInf IDs instead of URLs
– User adv.: automatic content integrity check, reduce broken links
– Publishers adv.: simplify content management via persistent IDs

� Load and overhead not an issue
– Implementation also smoothly running on Android cell phones

11/11/2010 Slide 18

prototype

� implementation
– self-certification
– persistent IDs
– owner authentication
– basics of owner identification

� algorithm
– can use any encryption/signature algorithm.
– currently use RSA and SHA1 for the hashing

