Effect of IW and Initial RTO changes

Ilpo Järvinen, Aki Nyrhinen, Aaron Yi Ding, Markku Kojo

Department of Computer Science University of Helsinki

W UNIVERSITY OF HELSINKI

IETF79 / Beijing Nov 11th 2010

- Simulation study to evaluate effects of recently proposed changes:
 - Initial Window change from 3 packets to 10 packets
 - Initial RTO change from 3 seconds to 1 second
- Focus on (typical) slow/moderate bit-rate wireless links like environments
- Initially presented IW10 results in the last ICCRG meeting @ Maastricht

Test setup

- Links (bw/one-way propagation delay)
 - EGDE 160kbps/250ms, BDP = 7 pkts (6.7)
 - HSPA 2Mbps/70ms, BDP = 24 pkts (23.3)
 - LTE 50Mbps/15ms, BDP = 125 pkts
- No wireless errors, nor allocation / error related delays considered
- 11ms propagation delay from sender to wireless link
- Buffer (FIFO) sizes
 - BDP (Bandwidth Delay Product)
 - 2 · BDP
 - 50 Packets (EDGE only)
- Workload: A burst of 1, 2, 6 or 18 simultaneous downstream TCP flows (total 180kB) competing against a similar later starting burst (another 180kB), 100 replications
- ns2 TCP SACK in use

- With small number of TCP flows, IW10 improves performance
- With larger number of flows, IW10 tends to decrease performance - Regardless of IW, too many flows clearly results in suboptimal performance
- Fairness for later starting traffic improves with IW10
- Fairness within both bursts worse with IW10

IRTO: LTE (50Mbps/15ms, BDP=125 Packets)

No changes

- No spurious RTOs
- **RTOs** with IW10 when # of flows is 6+6 or 18+18
 - But not in the beginning for the flow that completes last (not for the SYN nor the first packet)
 - $\blacksquare \Rightarrow \mathsf{IRTO} \text{ has no effect}$

IRTO: HSPA (2Mbps/70ms, BDP~23 Packets)

Observations

- When overloaded, small improvement for the longest cases among later starting traffic
- Opposite effect for the first starting burst (the shortest cases delayed)
- No changes due to IRTO1 with 1+1 or 2+2 flows

IRTO: EDGE (160kbps/250ms, BDP≈7 Packets)

Observations

- With large buffer, number of RTOs increase
 - Mostly spurious RTOs
- ⇒ Completion of the longest flow is delayed
- The same trend with larger number of flows
- When IW10 in use, the first starting burst is able to take advantage and completes unfairly early

IRTO: EDGE (160kbps/250ms, BDP≈7 Packets)

Observations

- Mostly the same regardless of IRTO
- IW10+IRTO1 becomes more fair
 - RTO occurred sooner for the later starting burst (a spurious one)

Cfg	RED		REDok		
Link	EDGE	HSPA/LTE	EDGE	HSPA	LTE
Wq	0.002	0.002	0.2	0.02	0.001
max _p	0.1	0.1	0.65	0.65	0.1
th _{min}	3	5	3	3	5
th _{max}	9	20	40	50	125
buffer size	$2 \cdot BDP$	$2 \cdot BDP$	50	100	400

Large buffers with RED configuration were not tested

- Not useful because of avg > th_{max} dropper
- REDok config aimed to highly varying load
 - Thus vastly different from "default configuration"
 - Aggressive enough to respond to slow start
 - Parameters are link characteristics dependent

Single Flow One-way Delay (FIFO, RED and IW3, IW10)

- IW10 slightly more aggressive
- RED similar to FIFO behavior (too slow to react)
- With BDP IW10 hurts itself due to self-congestion
 - Slightly smaller delays except for the highest end

Single Flow One-way Delay (FIFO, REDok and IW3, IW10)

- Also REDok fails to control the delay increase IW10 imposes
- Maximum values with REDok:
 - IW10: 2.80s
 - IW3: 2.06s

6 Flows One-way Delay (FIFO, RED and IW3, IW10)

• IW10 less aggressive due to self-congestion \Rightarrow more bursty

6 Flows One-way Delay (FIFO, REDok and IW3, IW10)

- With REDok, traffic regulation works without heavy tail-drop ⇒ IW10 shows to be significantly more aggressive
- Maximum values with REDok:
 - IW10: 0.429s
 - IW3: 0.296s

One-Way Delay in Rest of Cases

Similar behavior observed:

- Self-congestion \Rightarrow IW10 is less aggressive
 - Except for the very highest end (in some of the cases)
- With low enough load, IW10 is slightly more aggressive
- IRTO1 only slightly "shifts" curves
 - Only happening when IRTO1 has some effect in the first place
 - Quite insignificant in numbers
- Actual shape of the delay curves vary per queue size and type, however, those differences are out of scope here

- Smaller initial RTO performs better when effective e2e RTT smaller than 1 second
- More controversial when e2e RTT is larger
- IW10, while improving elapsed times, imposes higher queuing delay than IW3
 - However, if self-congesting, IW3 is more aggressive in terms of queuing delay
 - AQM (RED) failed to control the increase in the queuing delay

Questions?

Backup slides

RED config (detailed ns2)

Queue/RED set bytes_ true Queue/RED set queue_in_bytes_ true Queue/RED set gentle_ false Queue/RED set setbit false Queue/RED set use_mark_p_ false Queue/RED set mean_pktsize_ 1500 Queue/RED set idle_pktsize_ 1500 Queue/RED set q_weight_ \$wq Queue/RED set thresh_ \$minth Queue/RED set maxthresh_ \$maxth Queue/RED set linterm_ [expr 1.0/\$maxp] Queue/RED set wait_ false

6 Flows Elapsed Times (FIFO, RED, REDok and IW)

HSPA, Later Starting Burst

6 Flows Fairness (FIFO, RED, REDok and IW)

