Address Resolution for Massive number of hosts in Data Center (ARMD)

Problem Statements-01

Linda Dunbar (<u>ldunbar@huawei.com</u>) & Sue Hares (<u>shares@huawei.com</u>) Murari Sridharan (<u>muraris@microsoft.com</u>) Narasimhan Venkataramaiah (<u>narave@microsoft.com</u>) Benson Schliesser(<u>bschlies@cisco.com</u>)

Special Properties of large Internet Data Center

• Massive number of hosts

- Server virtualization makes it easier to instantiate multiple Virtual Machines (VM) on one physical server.
- Massive number of client subnets (VLANs, or Closed User Groups)
 - Each client may need 10 plus VLANs for various zones. Some subnets may have their own IP addresses
- High desire to dynamically grow and shrink resources to meet the demand and to draw those resources from most optimal locations.
 - This may lead to hosts belonging to one subnet to span across multiple shelves or locations.
 - Then, the ARP broadcast and ND multicast messages will traverse many backbone links and switches.

Amortized Cost	Component	Sub-Components
$\sim 45\%$	Servers	CPU, memory, storage systems
$\sim 25\%$	Infrastructure	Power distribution and cooling
$\sim 15\%$	Power draw	Electrical utility costs
$\sim 15\%$	Network	Links, transit, equipment

Why Layer 2 in Data Center?

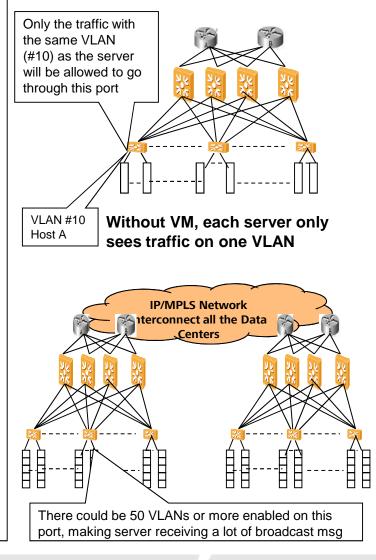
- VM migration requires Source and Destination to be in Layer 2
 - **D** VMs being moved need to maintain the same IP addresses
- Many network services such as firewalls and load balancers must be in-line with network traffic in order to function correctly.
 - Some load balancing algorithms, e.g. Direct Server Return, requires all hosts in Layer 2
 - Layer 2 networks often provide a form of traffic engineering for steering traffic through these devices for a given subnet or segment.
- Active/Standby hosts need to be in one Layer 2

ARP problems in general

• There are lots of ARP messages:

- Hosts frequently send out gratuitous ARP.
- Hosts (applications) age out MAC to target IP mapping very frequently.
 - Usually in minutes.
 - Servers/hosts and their applications behavior are unpredictable

• The impact of huge amount of ARP messages in one broadcast domain:


- Heavy impact to servers
 - Typical low cost Layer 2 switches don't have sophisticated features to block broadcast data frames or have policy implemented to limit the flooding and broadcast storm.
- □ Force switches (e.g. TOR) to learn many useless source MAC addresses
 - For a subnet with 1000 hosts, if there is only one host of the subnet residing under TOR-1, the TOR-1 has to learn all the 1000 MACs for all the hosts because of frequent ARP msgs even though the host under the TOR-1 may only need to talk to a couple of other hosts in the subnet.
 - When hosts' ARP timer is shorter than switches MAC FDB time-out value, the switches will be refreshed of all the MACs
 - When the TOR-1 has thousands of servers underneath, the MAC FDB can overflow causing more unknown flooding.

ARP/ND Problems get worse when subnets are not confined to one location

- ARP/ND broadcast/multicast messages are no longer confined to smaller number of ports.
- Some hosts might be temporarily out of service during VM migration.
 - Lots of ARP request broadcast messages transmitted from hosts to temporarily out of service hosts.
 - switch does not learn their path because there is no response from those target hosts,
 - causing all ARP msgs from various hosts will be broadcasted repetitively.
- Gratuitous ARP broadcast from new location flood to all TOR switches

Why VLAN (or smaller subnet) alone is not enough

- VLAN works well when all hosts belonging to one VLAN are confined to one location .
- When hosts belonging to one VLAN are placed at different shelves and one shelf has multiple VLAN enabled, all broadcast messages are no longer confined anymore.
 - **•** The effect is same as one large VLAN.

