
LWIG API Survey of implementations
and considerations

Carl Williams

Consideration of the API

• Examining the implications of the constrained
physical and stack environment on the API model
– API implementation
– API specification
– Application developer

• API considerations document should be included
as part of the Light weight Implementation
Guidance suite of documentation.

Why important

• There will be API changes – both in specification and
the interface between the API and the lower layers
(udp, tcp, IP).

• Aiding the implementors of the API – by providing
common experiences learned and recommendations of
how to deal with API in Light-weight stacks.

• Understanding and Supporting the Needs of API
Learners for these light weight stacks.
– Don’t want to have to invent or learn a whole new way to

write networking applications for these devices.

Survey the API
implementation experience

• Survey seeks to collect experiences from implemention
of IP stacks in constrained devices with focus on API or
application impacts/considerations.

• “TinyOS” University of California Berkeley, TinyOS
http://docs.tinyos.net/index.php/Main_Page

• “uIP” Adam Dunkel, Swedish Institute of Computer
Science, "Adam Dunkel's uIP",
http://www.sics.se/~adam/uip/index.php/Main_Page

• Others
– Proprietary stacks with API
– Other public domains?

API implementation

• Implementation and design of the API with respect to how
applications receive, process and send packets must take into
account
– The impact on RAM usage

• Best approaches to minimize overhead
– The impact on throughput

• How to minimize overhead but balance performance requirements.
– The impact on CPU utilization

• How to minimize tasks that require additional CPU execution time.
– The impact on Flash

• How to balance code size for the API (libraries, code) and applications to fit
into limited Flash.

• Will the applications be well-suited to resulting API changes.

Synthesis of collection of experiences

• Here is what good, what is bad
• Benefits & consequences of varied approaches
• Scaling issues – driving toward a single recommended

API
– Scaling API from say a 8-bit micro to 32-bit micro
– Scaling from 32K of flash to 4MB flash
– on can be provided in the API guidance.

• Is a common API specification possible – not purpose
of the initial guidance document (but possible
outcome).

• API experiences that may impact applications,
developers, stack writers, hardware requirements

Beginnings of Synthesis

• uIP application interface
– event driven API model
– Standard multi-threaded model not used

• Consumes too much RAM and CPU processing.

• TinyOS
– Non-blocking API

• When application interface sends a message the routine
would return immediately (before msg is sent)

• Call-back facility notifies app when sending is done.
• Benefit: no code runs for long periods of time; otherwise,

pkt is dropped.

Next Steps

• Continue to collect implementation
experiences for survey
– Work with IPSO alliance & other implementors
– Proprietary stacks can provide high-level guidance

information on internals

• Continue to Synthesis
– Continue to update the analysis
– New perspectives I have not thought about

