Centralized and Distributed Mobility Traffic Analysis

Dapeng Liu (China Mobile)
Jun Song (ZTE)
Wen Luo (ZTE)

Mar. 2011

Purpose

- Compare the Centralized Anchor Deployment Model with the Distributed Anchor Deployment Model
- Measurements
 - Traffic Load
 - Traffic Delay
 - Traffic Congestion Possibility

Traffic Model

Centralized Anchor Model

Distributed Anchor model

Traffic Load Analysis

Centralized, Traffic Load

- In metro: 1.4 copy (0.6.+0.4+0.4)

- In Backbone: 1 copy (0.6+0.4)

Distributed, Traffic Load

- In metro: 1 copy (0.6.+0.4)
- In Backbone: 0.6 copy (0.6+0.4)
- Distributed model saves 40% of traffic load within backbone
- Distributed model saves 28.6% of traffic load within metro

Delay Analysis

Let Delay within metro=T1, Delay within backbone=T2

- 1.4T1 + T2

- Distributed, Total Delay
- T1+0.6T2
- Distributed model decreases the Delay
 - If T1=T2, distributed model decreases 33.3% of total delay
 - If T2=0, distributed model decreases 28.6% of total delay

Congestion Analysis

■ Let congestion possibility within metro = X, congestion possibility within backbone=Y

- Distributed model decreases the congestion possibility
 - E.g., Let X=Y=3%, the congestion probability of Centralized model = 7.01%, the congestion probability of Distributed model = 4.75%. So, the congestion probability is 2.29% lower then the centralized model

Conclusion

- Distributing mobility anchor to the network edge has benefits
 - Save traffic load in both backbone and metro
 - Decrease the end to end delay
 - Decrease congestion possibility

Thanks! Q&A