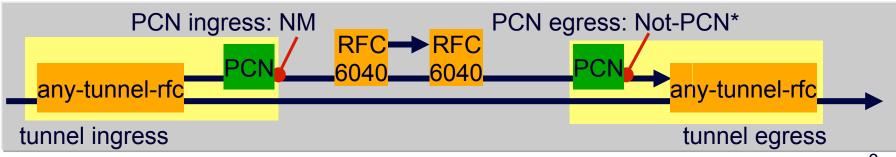
Encoding 3 PCN-States in the IP header using a single DSCP draft-ietf-pcn-3-in-1-encoding-04.txt

Bob Briscoe, BT Toby Moncaster, independent Michael Menth, Uni Tuebingen IETF-80 PCN Mar 2011


status

- Encoding 3 PCN-States in the IP header using a single DSCP
 - mature draft: <u>draft-ietf-pcn-3-in-1-encoding-04.txt</u>
 - **dependency:** RFC6040 (now Proposed Standard)
 - **intended status:** experimental \rightarrow standards track
 - **exec summary:** very simple but complete draft
 - immediate intent: WGLC over, but some spare text needs a home Consider implications of "updates 5696"

	DSCP	00	10	01	11
Baseline RFC 5696	DSCPn	Not-PCN	NM	EXP	PM
3-in-1	DSCPn	Not-PCN	NM	ThM	ETM

additional section: support for e2e ECN

- 4 approaches in baseline encoding app' x are imprecise:
 - 1. tunnel across PCN domain
 - 2. encode e2e ECN into an extended PCN encoding
 - 3. signal lack of ECN support to source (e.g. by drop)
 - 4. remark ECN-capable packets to a non-PCN-capable DSCP
- now clearer what to recommend
 - lay out all the possible cases
 - esp. document precisely how PCN uses a tunnel to protect e2e ECN
 - flag when updates or deprecates each of the above 4 approaches
- main point: e2e ECN safe if PCN placed logically within tunnel
 - any tunnel endpoint within 3-in-1 PCN domain must satisfy RFC6040

^{*} experimentally, could leave PCN unchanged to trigger codec adaptation

Encoding 3 PCN-States in the IP header using a single DSCP draft-ietf-pcn-3-in-1-encoding-04.txt

