
Proportional Rate Reduction
for TCP

TCPM, IETF-80 Prague

Matt Mathis, Nandita Dukkipati, Yuchung Cheng
{mattmathis, nanditad, ycheng}@google.com

draft-mathis-tcpm-proportional-rate-reduction-00

Motivation

Two widely deployed algorithms in loss recovery: RFC 3517
fast recovery and Rate halving.
There are cases when both are prone to timeouts.

RFC 3517 fast recovery waits for half of ACKs to pass
before sending data.
Rate halving does not compensate for implicit cwnd
reduction under large losses.

Goals of Proportional Rate Reduction.
Reduce timeouts by avoiding excessive window
reductions.
Converge to cwnd chosen by congestion control by the
end of recovery.

Proportional Rate Reduction with
Reduction Bound (PRR-RB)

PRR-RB has two algorithms.
Proportional rate reduction (PRR):

Patterned after rate halving but with a factor that
depends on congestion control reduction.
Main idea: sending rate = r * queue drain rate in
recovery; r is CC reduction factor.
For precision, queue drain rate is computed as amount
of newly delivered data to receiver.

Reduction bound (RB):
Main purpose: inhibit further cwnd reductions under large
losses (pipe < ssthresh).

PRR-RB pseudo code

Algorithm:

if (pipe > ssthresh) // Proportional Rate Reduction.
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else // Reduction Bound.
 sndcnt = MIN(ssthresh - pipe, prr_delivered - prr_out)

On any data transmission or retransmission:
prr_out += (data sent) // Smaller than or equal to sndcnt.

Start of recovery:
ssthresh = CongCtrlAlg() // Target cwnd after recovery.
RecoverFS = snd.nxt - snd.una // FlightSize at start of recovery.

On each ACK in recovery, compute:
// DeliveredData: #pkts newly delivered to receiver.
DeliveredData = delta(snd.una) + delta(SACKd)
// Total pkts delivered in recovery.
prr_delivered += DeliveredData
pipe = RFC 3517 pipe algorithm

http://tools.ietf.org/html/rfc3517

Properties of PRR-RB

Spreads out window reduction evenly across the
recovery period.
Converges to target cwnd chosen by CC for minimal losses.
Maintains ACK clocking even for large burst losses.
Precision of PRR-RB is derived from computing
exact segments delivered to the receiver during recovery.
On every ACK, cumulative data sent during recovery is
bound by the cumulative data delivered to the receiver
during recovery.
Banks the missed opportunities to send if application stalls
during recovery.
Less sensitive to errors of the pipe estimator.

Proportional Rate Reduction without
Reduction Bound (PRR w/o RB)

Observation: there are cases where RFC 3517 sends more
than the reduction bound of PRR-RB.

Example: pipe == cwnd == 100 packets, lost packets 1 -
90, packet 93 can generate a burst up to 40 packets.
RFC 3517 is not conservative in this scenario.
PRR-RB bounds #pkts sent by (prr_delivered -
prr_out).

PRR w/o RB: cwnd is bound below only by ssthresh.
if (pipe > ssthresh) // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else
 sndcnt = ssthresh - pipe

Example flow in PRR-RB, PRR w/o RB

Ratio of pkts sent to
delivered is 0.7.

pkts sent ==
pkts delivered.

Ratio of pkts sent to delivered is
0.7.

Different from PRR-RB
only for large burst losses
(not shown here).

pipe == ssthresh

Example flow in Linux and RFC 3517

Rate-
halving: send one
new pkt on
alternate ACKs.

cwnd == pipe + 1

Silent period
at start of recovery. Other

recovery
events.

Linux flows often end up in slow start after
recovery when short responses have no
new data to send and pipe reduces to 0 .

Performance
Two kinds of experiments: Google Web server, datacenter traffic.

PRR w/o RB reduces timeouts in recovery.
Reduces tail latency of 1MB RPCs by 35% (w.r.t. RFC) and
16% (w.r.t Linux).

Data in this spreadsheet: http://goo.gl/xl6cF

PRR w/o RB RFC 3517 Linux
FastRecovery events

TotRetrans

FastRetrans
RegularFastRetrans
ForwardFastRetrans

TimeoutRetrans
TimeoutOnOpen
TimeoutOnRecovery
TimeoutOnDisorder

1,759

8,471

8371
7,916
455

41
7
18
16

2,755

15,236

14881
13,202
1,679

177
17
148
12

1,738

8,282

8158
7,971
187

50
16
20
14

99% latency of 1MB
RPCs (us)

15,064 23,105 17,956

http://goo.gl/xl6cF

Benefits and costs

Benefits:
Smaller number of timeouts.
In some cases, smaller number of recovery events.
Lower tail latencies of request-response traffic.

Cost:
Need to investigate if there are indirect costs to sending
packets early on in recovery as opposed to letting more
ACKs pass first.

Going forward

Should the PRR draft be a WG item?
Design of PRR improves upon the current standard in
reducing timeouts.
Initial experiments demonstrate promising results.
Goal: adopt as experimental so people can gain
experience.

