
SPDY, TCP,
and the

Single Connection Throttle

Mike Belshe
mbelshe@google.com

04/01/11

A New Protocol? What for?

Speed.

State of the Web Page

An average Web Page Consists of:
~44 resources
~7 hosts
~320KB
~66% compressed (top sites are ~90% compressed)
Note: HTTPS is < 50% compressed.

Incremental improvements to HTTP don't move the needle
Transparent proxies change the content.
Example: pipelining
Example: stripped "Accept-Encoding" headers

we can't even improve "negotiated" compression!

Quick SPDY Background

Goals:
Faster web page downloads
Always secure
Deployable
Open

Features (No rocket science here!)
Single-connection, Multiplexed, prioritized streams
Mandatory header compression
Supports server-push

SPDY is Basic Networking "blocking and tackling"
Use fewer connections
Send fewer bytes

HTTP Connection Use Today

Average: 29 connections per page.

25%-tile = 10 50%-tile = 20 75%-tile = 39 95%-tile = 78

Reducing Upload Bytes

Reducing Download Bytes

Reducing Total Packets

Increasing Parallelism

The Single Connection Throttle

Throttle #1: CWND

Problem:
Server-side slow start limits server to N packets. (in flux)

Workaround:
Use more client connections.
Update server to go beyond spec.
SPDY can use a cookie based cwnd.

Note:
HTTP's per-domain cwnd is currently ~24 (6*4).
draft-ietf-tcpm-initcwnd-00.txt helps

Throttle #1 CWND vs # connections

Throttle #2: Receive Windows
Problem:

Some clients set initial rwnd to 5840 bytes (4 pkts)
Trumps larger cwnd on servers.
Patch just shipped this month in linux mainline

Workaround:
Use more client connections.

Throttle #2: Init rwnd

Throttle #3: Intermediaries
Problem:

"Just a bug"... but... Intermediaries can (and do) tamper.
window scale enables large receive windows.

Workaround:
Use more client connections.

Server Side
// Server recvs window
// scale 3. Someone
// tampered with this.
SYN -> w=5840, ws=3
// Server sends its own
// ws of 6.
SYNACK <- w=5840, ws=6

Client Side
// Client wants window
// scaling 6.

SYN -> w=5840, ws=6
// Client receives server
// ws as sent.
SYNACK <- w=5840, ws=6

// going to be slow....

Throttle #4: Congestion Control

Problem:
Congestion detection decreases the send rate.
But congestion signals can be erroneous.
Applied to the connection, not the path:

1 connection: single packet loss cuts send rate by N
(typically 0.5/0.7).
6 connections: single packet loss cuts send rate by
1/6*(1/N) == (~1/9th to 1/12th)

Workaround:
Use more client connections.

Too Obsessed With 1 Connection?

Could we use 2? 3?
Sure, but it neutralizes many of our benefits.

Disadvantages of multiple connections:
Sharing state across connections is hard.
Server farms would be required to do sticky load
balancing
Compression worsens (we use stateful compression)
Prioritization becomes impossible
Server push difficult

But it shouldn't be this hard...

How Much Does A Handshake Cost?

What's Next?

Before SPDY, we could blame the app layer (HTTP).
With SPDY, we're on the verge of proving that the transport
is the new bottleneck.
TCP needs to address 2 performance obstacles:

Data in initial handshake.
Single connection taxes.

TCP needs to address security
Both Server Auth & Encryption
(Sorry I didn't have time to discuss in this talk!)

How can we iterate on the transport when it is buried in the
kernel? Can we auto-update the network stack?

