Security Extension for OSPFv2 Using Manual Key Management

Manav Bhatia, Alcatel Lucent Sam Hartman, Painless Security Dacheng Zhang, Huawei Technologies Acee Lindem, Ericsson

Draft Overview

- Defines new OSPFv2 AuthType for backward compatibility – Value of 3 suggested to IANA.
- Extends OSPFv2 sequence number from 32 bits to 64 bits and partitions the sequence number space.
- Defines keys selection rules with respect to draft-ietf-karp-crypto-key-table-00.txt.
- Protects IP source address with cryptographic hash.

Sequence Number Extension (1/3)

- Current sequence number weaknesses
 - Monotonically increasing
 - Only 32 bits no provision for router restart
- New AuthType Sequence Number
 - Strictly increasing
 - 64 bits 32 bits of boot count and 32 bits of sequence number
 - Moved out of OSPFv2 header auth data

Sequence Number Extension (2/3)

- Boot Count
 - Maintained in non-volatile storage for the life of the deployed router.
 - Incremented each time OSPF router loses its state.
 - Can also be incremented if low order sequence number wraps
- Sequence Number is incremented for every OSPFv2 packet sent

Sequence Number Extension (3/3)

- Receiver drops packet if received packet's sequence number is not greater than previously received OSPF packet of same type – handles prioritization of hellos and acks.
- 64 bit sequence number follows OSPF packet but before authentication data
 - Doesn't fit in OSPFv2 header
 - Not in OSPFv2 length
 - Included in IP packet length

Key Selection Rules Mapping Key Database

- Mapping to Database of Long-Lived Symmetric Cryptographic Keys <draft-ietfkarp-crypto-key-table-01.txt>
- Key Mapping for Unicast transmission
 - Currently problem with virtual links
- Key Mapping for Multicast transmission
- Key Mapping for Reception
- Discussion on usefulness of this section or normative reference to key database draft.

IP Source Address Protection

- Currently unprotected Source IP address used by OSPFv2 for OSPF router identification on broadcast and NBMA networks
- IP Source Address replaces Apad in cryptographic authentication as described in RFC 5709, section 3.3.
- Apad is a hexadecimal constant value 0x878FE1F3 repeated (L/4) times, where L is the length of the hash in bytes.

Next Steps

- Revision Forthcoming
- Determine if Key Selection useful in the context of this draft
- Review and discussion on the OSPF list

Review of Proposed Changes

2 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
er ID
i ID
AuType (3)
0 Auth Data Len
·+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
ol Packet
racket ~
nt) -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Increasing Packet Counter)
I
rtion Data