

Efficient Secure BGP AS Path using FS-BGP

Xia Yin, **Yang Xiang**, Zhiliang Wang, Jianping Wu Tsinghua University, Beijing

81th IETF @ Quebec

Outline

- Introduction
 - FS-BGP: Fast Secure BGP
 - Terminology
 - Quick review of S-BGP
- FS-BGP
- Evaluation
- Discussion

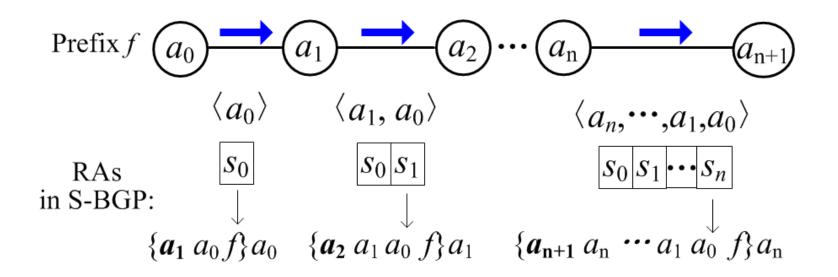
FS-BGP: Fast Secure BGP

- How to secure the path
 - CSA (Critical path Segment Attestation) to secure the AS path
 - SPP (Suppressed Path Padding) to protect the optimal path and prevent effective hijacking
- Security
 - All the authenticated paths are feasible path
 - Achieves similar level of security as S-BGP
- Computational cost (on backbone router)
 - Singing cost: ~0.6% of S-BGP
 - Verification cost: ~3.9% of S-BGP

Terminology (1)

- Feasible Path
 - Exist in the AS-level graph, and satisfies
 import and export policies of all ASes along the path
- Unfeasible Path
 - -(1) Paths do **NOT** exist in the DAG
 - (2) Paths violate import and export routing policies

Terminology (2)


• Three categories of Feasible Path

 Outdated Path: path announced but temporarily not available

- Current Path: currently using and announcing path
- Not announced Path: feasible but not announced, because BGP only announce the current optimal path each time

Signatures in S-BGP

Route Attestations (RA) to secure the path

Pros and Cons of S-BGP

- Actually singed the whole path, including the recipient AS
- **Pros**: the most secure schema
- Cons
 - Unbearable computational cost, so many paths.
 - Long Exp-date: unable to defend replay attack
 - Short Exp-date: destroy the whole system

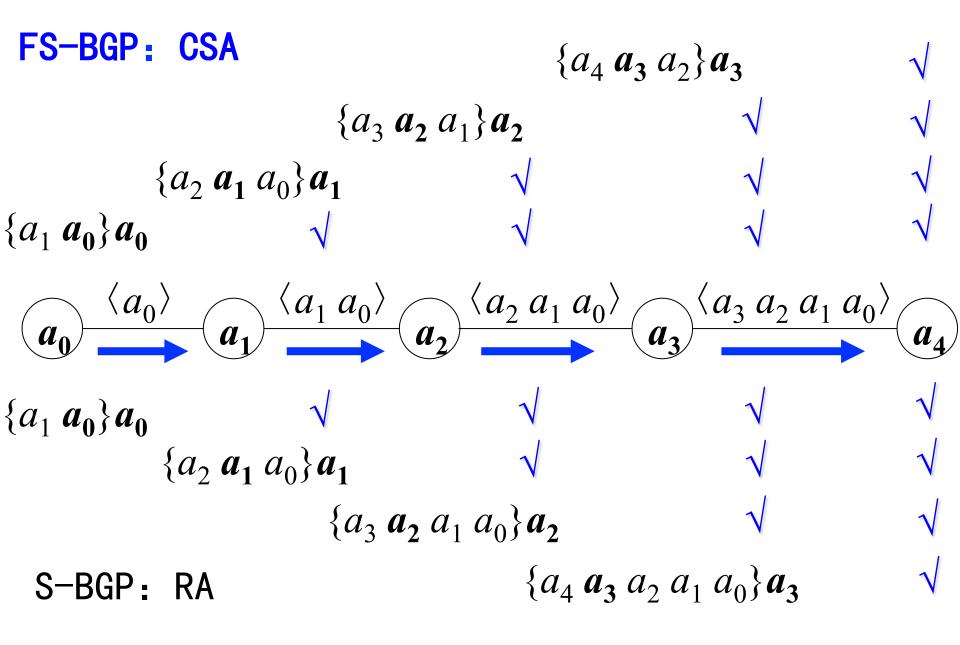
Outline

- Introduction
- FS-BGP: Fast Secure BGP

 CSA: Critical Segment Attestation
 SPP: Suppressed Path Padding
- Evaluation
- Discussion

Announcement Restrictions in BGP

- Best route announcing
 - Temporary restriction
 - Local preference and other metrics
- Selective import & export policy
 - Persistent restriction
 - Neighbor based import and export: contracts (\$\$) are between neighbor Ases
 - Feasible path: exist in AS-level graph & obey the policy


Critical Path Segment

• In path: $p_n = \langle a_{n+1}, a_n, ..., a_0 \rangle$, the Critical Path Segment c_i owned by a_i is

$$c_i = \begin{cases} \langle a_1, a_0 \rangle & \text{for } i = 0\\ \langle a_{i+1}, a_i, a_{i-1} \rangle & \text{for } 0 < i \le n \end{cases}$$

- Those adjacent AS triples actually describes part of routing policy of the corresponding owner
 - $c_i = \langle a_{i+1}, a_i, a_{i-1} \rangle$ means a_i can (**and already**) announce routes to a_{i+1} which are import from a_{i-1}
 - If every owner sings the critical segment in a current announcing path, the consequence ASes will be able to verify the whole path

 $\{msg\}a_i$: signature of msg signed by a_i

Signatures in FS-BGP and S-BGP

Signatures for the path: $p_n = \langle a_{n+1}, a_n, a_{n-1}, ..., a_0 \rangle$ a_1 Prefix f (a_n) a_2 a_0 a_{n+1} $\langle a_1, a_0 \rangle$ $\langle a_0 \rangle$ **FS-BGP** CSAs **S**0 $S_0 S_1$ $|S_0|S_1| \cdots |S_n|$ in FS-BGP: $\{a_1 a_0 f\}a_0 = \{a_2 a_1 a_0\}a_1$ $\{a_{n+1} a_n a_{n-1}\}a_n$ (a_n) a_1 Prefix f a_2 μ_{n^+} $\langle a_0 \rangle$ a_1, a_0 S-BGP RAs $S_0 | S_1 |$ **S**₀ $|S_0|S_1| \cdots S_n$ in S-BGP: $\{a_{n+1} \ a_n\}$ $\{a_2 a_1 a_0 f\}a_1$ $\{a_1 \ a_0 \ f\}a_0$ $\cdots a_1 a_0 f a_n$

Cost Reduction

- (# total critical segment) << (# total AS path)
- If we use a small cache, the cost will be sharply decreased

- S-BGP: a_n receives k paths, signs k signatures - FS-BGP: a_n receives k paths, signs 1 signature

Outline

- Introduction
- FS-BGP: Fast Secure BGP

– CSA: Critical Segment Attestation
 – SPP: Suppressed Path Padding (Optional)

- Evaluation
- Discussion

CSA achieves Feasible Path Authentication

• Paths can be verified in FS-BGP are all feasible paths [Theorem 1]

Signed paths in S-BGP

 P_{S}

Signed paths in FS-BGP

 P_{FS}

1. Outdated path 2. Current path

- 1. Outdated path
- 2. Current path
- 3. Revealed path

1. Outdated path

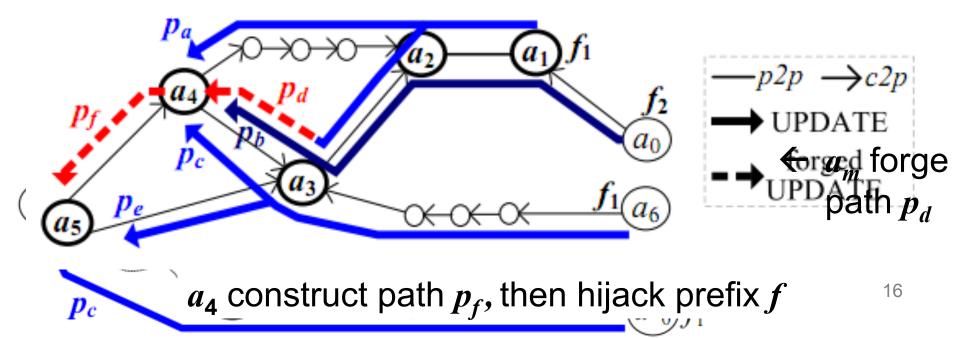
All feasible

paths

 P_F

 \subset

- 2. Current path
- 3. All not announced path


 \mathbf{P}_F

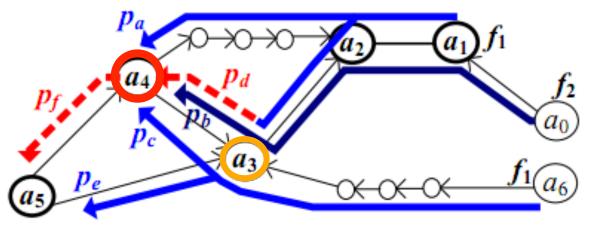
P_{FS}

 P_{S}

Forge a path in FS-BGP is possible

- Forged path (Revealed path) in FS-BGP
 - Using authenticated path segments, manipulator can construct forged path, which is feasible but currently not announced.

Conditions of **Effective Hijacking**


- Effective hijacking: the traffic is not forwarded by the attacker under normal status.
- (1) Forged path is **still feasible**, and only temporarily not received by the attacker!
- (2) Forge a path in FS-BGP is very difficult
 - Must be constructed using received authenticated path segments
 - Must not be announced by the intermediate AS
 Can NOT be shorter than 5 hops [Theorem 2]
- (3) Only short enough forge-path can be used for a effective hijacking [Theorem 3]

Prevent Effective Hijacking

- Using ASPP, can grantee that attacker can not concatenate short enough forge path
- Short enough: shorter than the optimal path (longest live-time)

 ${a_4, a_3, a_2}a_3$ \downarrow ${a_4, a_3, 3, a_2}a_3$

 $p_f = \langle a_5, a_4, a_3, a_3, a_3, a_3, a_2, a_1 \rangle$

FS-BGP, THU, 81th IETF

SPP: Suppressed Path Padding

- Suppressed Path: paths with lower local preference in the decision process
- Suppressed path may shorter than optimal path

Basic decision process:

- 1. Highest Local Preference (LP)
- 2. Shortest Path Length (PL)
- 3. Tie Breaks (TB)

Compute k_i :

Igorithm 1 Suppressed Path Paddingnput: local
$$A \subseteq a$$
 paidbox $A \subseteq a$ Putput: k_i :
padded irpadded ir1: if $a_i \ge 1$ ht1. Suppressed Path2: return3: $k_i \leftarrow 1$ 4: for all pt5: $opt(p)$,5: $opt(p)$,6: if $PL(i$ 7: $k_i \leftarrow$ 8: return k_i

Outline

- Introduction
- FS-BGP: Fast Secure BGP
- Evaluation
 - **Security Level**
 - Computational Cost
- Discussion

Security Level

						•	
	FS-	S-	FS-BGP	SO		\mathbf{h}	
Type of Attack	BGP	BGP	(no SPP)	BGP	Current		
Inefficient hijack		\checkmark		\checkmark	Path		
False origin AS	\checkmark		\checkmark			FSBGP	
Infeasible path			\checkmark	×			S-BGP
Feasible path						ESECE (no SEE	Λ
Potential path		\checkmark	\checkmark	×		FSBGP (no SPP)
Revealed path	$\sqrt{*}$	\checkmark	×	×	ອີ Feasible ອິ Path		
Outdated path	$\sqrt{*}$	×	×	×	Path		
Policy violating [10]	×	×	×	×			
Link-cut [4]	×	×	×	×		soBGP	
\mathcal{D}_{-}	D (no	(DD)	\mathcal{D}_{-}		Infeasible		
$\mathcal{P}_S \mathcal{P}_S$	$\mathcal{D}_{FS}^{(no)}$	SPF)	$\rightarrow \mathcal{P}_F$		Path		
				time			\longrightarrow
Outdated Current		Reveal	ed Potenti	ial 🕨		Low	High
Path Path		Path				Cost	U
						COSL	

Computational Cost

30 days' real BGP updates from backbone routers

signings in every second

verifications in every second

Outline

- Introduction
- FS-BGP: Fast Secure BGP
- Evaluation
- Discussion
 - Support complicated routing policies
 - Protect privacy

Complicated Routing Policies

 AS may use complicate route filters to describe their routing policies

– Prefix filter:	export: to AS1 announ	ce RS-ABC	← Included feasible
	export: to AS2 announ	ce 213.153.0.0/19	prefixes into CSA
	export: to AS3 announ	ce AS3^16-24	
– Path filter:	export: to AS4 announ	$ce <^AS4\$>$	← Sign whole path
Origin filtor	export: to AS5 announ	ce AS-EFG	← Included feasible
– Origin filter:	export: to AS6 announ	ce AS6	origins into CSA

• FS-BGP can flexibly support route filters

Revisit the route filters

- Quantity of route filter
 - According our statistical result in IRR database, only a very small portion of policies use route filters
- Purpose of route filter
 - Some (i.e., origin/path filter) are set for security considerations, rather than policy requirements.
 - Others (i.e., prefix filter) are set for traffic engineering, to identifying the preference of a route, rather than the feasibility of a path

Privacy Protection

- Privacy: customer list ...
- FS-BGP can protect privacy data
 - Message spreading manner is same to BGP
 - Path segments not reveal additional info.
 - Path segments can only be passively received by valid BGP UPDATE receivers
 - Do NOT offer any kinds of public accessible policy database

Next step: call for WG adoption

- Acknowledgement
 - Greatly appreciate comments of *Russ White*

Thanks!

- Review
 - FS-BGP: Fast Secure BGP
 - CSA: Critical Segment Attestation
 - SPP: Suppressed Path Padding (Optional)
 - Evaluation
 - Security level: similar security level as S-BGP
 - Computational cost: reduced the cost by orders of magnitude
 - Support complicated routing policies
 - Protect privacy