
A+P implementations

X.Deng
M. Boucadair T.Zheng
L.Wang
France Telecom

X.Huang Q.Zhao Yan.Ma BUPT

Implementation Overview

Network Topology

CPE Parameters

Model 	CPU 	Speed (MHz)	İ	Flash (MB)	i I	RAM (MB)	Wireless NIC	Wireless Standard	İ	Wired Ports
Linksys WRT54GS			•		•	32	Broadcom (integrated)	11g		5

Two flavor of implementations

Port Range A+P

Scattered Port Sets A+P

Scattered ports provisioning

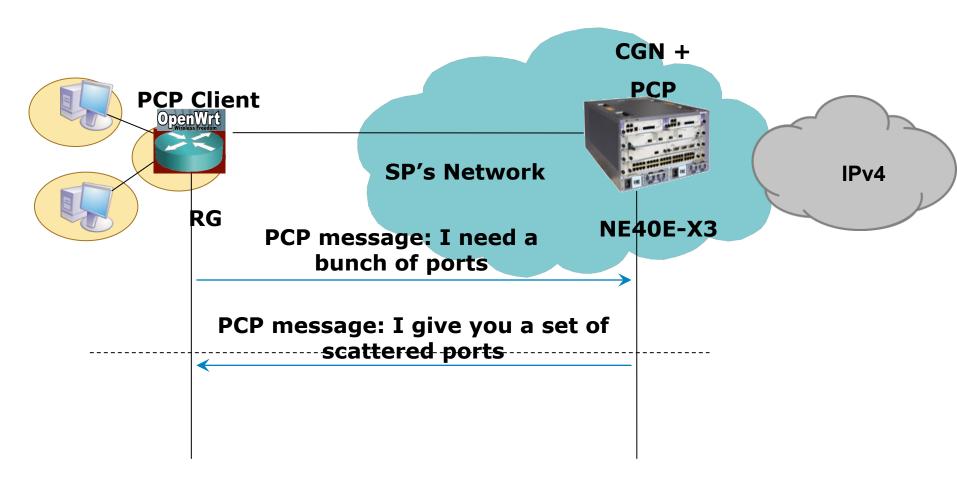
- What's the benefits of provisioning scattered ports?
 - For incoming ports
 - Scattered ports allocation is more likely to satisfy the random incoming port requests from applications
 - such as eMule, uTorrent, sharez, using UPnP 1.0

A solution

- to distribute bulks of non-continuous ports among subscribers,
- also takes port randomization into account

How to provision scattered ports?

- Only two parameters
- Subscribers ID pattern


Subscribers ID value

Random ephemeral port selection for Scattered Port Sets NAT

- Subscribers ID pattern
- Subscribers ID value

Only one line code needs to be changed!

An Implementation of Scattered Port Sets (A demo in DS-Lite case)

Location: 2000D

Check out website for this demo: http://130.129.48.23:35328/

What we learnt from it?

- What breaks?
 - UPnP 1.0 clients
- How to fix it?
 - Take care of port allocation mechanisms!
 - Same thing with even/odd ports allocation, which is something matters to RTP/ RTCP

```
_.._..,__
( )
]~,"-.-~~[
.=] ) '(; ([
|]:: ' [
'=]): .) ([
|:: '|
```

 Call for comments on mailing list