

Opus Testing

Opus Testing

● Goal:
● Create a high quality specification and implementation

● Problem:Engineering is hard
● More details than can fit in one person’s brain at once
● Does the spec say what was meant?
● Does what was meant have unforeseen consequences?
● Are we legislating bugs or precluding useful

optimizations?

Why we need more than formal
listening tests

● Formal listening tests are expensive, meaning
● Reduced coverage
● Infrequent repetition

● Insensitivity
● Even a severe bug may only rarely be audible
● Can’t detect matched encoder/decoder errors
● Can’t detect underspecified behavior (e.g., “works

on my architecture”)
● Can’t find precluded optimizations

The spec is software

● The formal specification is 29,833 lines of C
code
● Use standard software reliability tools to test it

● We have fewer tools to test the draft text
● The most important is reading by multiple critical

eyes
● This applies to the software, too
● Multiple authors means we review each other’s

code

Continuous Integration

● The later an issue is found
● The longer it takes to isolate the problem
● The more risk there is of making intermediate development

decisions using faulty information

● We ran automated tests continuously

Software Reliability Toolbox

● No one technique finds all issues

● All techniques give diminishing returns with additional use

● So we used a bit of everything
● Operational testing

● Objective quality testing

● Unit testing (including exhaustive component tests)

● Static analysis

● Manual instrumentation

● Automatic instrumentation

● Line and branch coverage analysis

● White- and blackbox “fuzz” testing

● Multiplatform testing

● Implementation interoperability testing

Force Multipliers

● All these tools are improved by more participants
● Inclusive development process has produced more review,

more testing, and better variety
● Automated tests improve with more CPU

– We used a dedicated 160-core cluster for large-scale tests

● Range coder mismatch
● The range coder has 32 bits of state which must match between

the encoder and decoder
● Provides a “checksum” of all encoding and decoding decisions
● Very sensitive to many classes of errors
● opus_demo bitstreams include the range value with every

packet and test for mismatches

Operational Testing

● Actually use the WIP codec in real applications

● Strength: Finds the issues with the most real-world impact

● Weakness: Low sensitivity

● Examples:
● “It sounds good except when there’s just bass” (rewrote the VQ search)
● “It sounds bad on this file” (improved the transient detector)
● “Too many consecutive losses sound bad” (made PLC decay more

quickly)
● “If I pass in NaNs things blow up” (fixed the VQ search to not blow up

on NaNs)

Objective Quality Testing

● Run thousands of hours of audio through the codec with many settings

● Can run the codec 6400x real time

● 7 days of computation is 122 years of audio

● Collect objective metrics like SNR, PEAQ, PESQ, etc.

● Look for surprising results

● Strengths: Tests the whole system, automatable, enables fast comparisons

● Weakness: Hard to tell what’s “surprising”

● Examples: See slides from IETF-80

Unit Tests

● Many tests included in distribution

● Run at build time via “make check”

● On every platform we build on

● Exhaustive testing

● Some core functions have a small input space (e.g., 32 bits)

● Just test them all

● Random testing

● When the input space is too large, test a different random subset every time

● Report the random seed for reproducibility if an actual problem is found

● Synthetic signal testing

● Used simple synthetic signal generators to produce “interesting” audio to feed the encoder

● Just a couple lines of code: no large test files to ship around

● API testing

● We test the entire user accessible API

● Over 110 million calls into libopus per “make check”

● Strengths: Tests many platforms, automatic once written

● Weaknesses: Takes effort to write and maintain, vulnerable to oversight

Static Analysis

● Compiler warnings
● A limited form of static analysis
● We looked at gcc, clang, and MSVC warnings regularly

(and others intermittently)

● Real static analysis
● cppcheck, clang, PC-lint/splint

● Strengths: Finds bugs which are difficult to detect
in operation, automatable

● Weaknesses: False positives, narrow class of
detected problems

Manual Instrumentation

● Identify invariants which are assumed to be true, and
check them explicitly in the code

● Only enabled in debug builds

● 513 tests in the reference code
● Approximately 1 per 60 LOC

● Run against hundreds of years of audio, in hundreds of
configurations

● Strengths: Tests complicated conditions, automatic once
written

● Weaknesses: Takes effort to write and maintain,
vulnerable to oversight

Automatic Instrumentation

● valgrind
● An emulator that tracks uninitialized memory at the bit level

● Detects invalid memory reads and writes, and conditional jumps based on
uninitialized values

● 10x slowdown (600x realtime)

● clang-IOC
● Set of patches to clang/llvm to instrument all arithmetic on signed integers

● Detects overflows and other undefined operations

● Also 10x slowdown

● All fixed-point arithmetic in the reference code uses macros
● Can replace them at compile time with versions that check for overflow or

underflow

● Strengths: Little work to maintain, automatable

● Weaknesses: Limited class of errors detected, slow

Line and Branch Coverage Analysis

● Ensures other tests cover the whole codebase

● Logic check in and of itself

● Forces us to ask why a particular line isn’t running

● We use condition/decision as our branch metric

● Was every way of reaching this outcome tested?

● “make check” gives 97% line coverage, 91% condition coverage

● Manual runs can get this to 98%/95%

● Remaining cases mostly generalizations in the encoder which can’t be removed without decreasing code
readability

● Strengths: Detects untested conditions, oversights, bad assumptions

● Weaknesses: Not sensitive to missing code

Decoder Fuzzing

● Blackbox: Decode 100% random data, see what happens

● Discovers faulty assumptions

● Tests error paths and “invalid” bitstream handling

● Not very complete: some conditions highly improbable

● Can’t check quality of output (GIGO)

● Partial fuzzing: Take real bitstreams and corrupt them randomly

● Tests deeper than blackbox fuzzing

● We’ve tested on hundreds of years worth of bitstreams

● Every “make check” tests several minutes of freshly random data

● Strengths: Detects oversights, bad assumptions, automatable, combines well with
manual and automatic instrumentation

● Fuzzing increases coverage, and instrumentation increases sensitivity

● Weaknesses: Only detects cases that blow up (manual instrumentation helps), range
check of limited use

● No encoder state to match against for a random or corrupt bitstream

● We still make sure different decoder instances agree with each other

Whitebox Fuzzing

● KLEE symbolic virtual machine
● Combines branch coverage analysis and a constraint solver
● Generates new fuzzed inputs that cover more of the code

● Used during test vector generation
● Fuzzed an encoder with various modifications
● Used a machine search of millions of random sequences to get

the greatest possible coverage with the least amount of test data

● Strengths: Better coverage than other fuzzing

● Weaknesses: Slow

Encoder Fuzzing

● Randomize encoder decisions
● More complete testing even than partial fuzzing

(though it sound bad)
● Strengths: Same as decoder fuzzing

● Fuzzing increases coverage, and instrumentation
increases sensitivity

● Weaknesses: Only detects cases that blow up
(manual instrumentation helps)
● But the range check still works

Multiplatform Testing

● Tests compatibility

● Some bugs are more visible on some systems

● Lots of configurations
● Float, fixed, built from the draft, from autotools, etc.

● Test them all

● Automatic tests on
● Linux {gcc and clang} x {x86, x86-64, and ARM}

● OpenBSD (x86)

● Solaris (sparc)

● Valgrind, clang-static, clang-IOC, cppcheck, lcov

● Automated tests limited by the difficulty of setting up the automation
● We had 28 builds that ran on each commit

Additional Testing

● Win32 (gcc, MSVC, LCC-win32, OpenWatcom)

● DOS (OpenWatcom)

● Many gcc versions
● Including development versions

● Also g++

● tinycc

● OS X (gcc and clang)

● Linux (MIPS and PPC with gcc, IA64 with Intel compiler)

● NetBSD (x86)

● FreeBSD (x86)

● IBM S/390

● Microvax

Toolchain Bugs

● All this testing found bugs in our development
tools as well as Opus
● Filed four bugs against pre-release versions of gcc
● Found one bug in Intel’s compiler
● Found one bug in tinycc (fixed in latest version)
● Found two glibc (libm) performance bugs on x86-64

Implementation Interop Testing

● Writing separate decoder implementation

● Couldn’t really finish until the draft was “done”

● CELT decoder complete
● Implements all the MDCT modes

● Floating-point only

● Shares no code with the reference implementation

● Intentionally written to do things differently from the reference implementation

● Bugs during development used to tune opus_compare thresholds

● Also revealed several “matched errors” in the reference code

● Currently passes opus_compare on the one MDCT-only test vector

● Tested with over 100 years of additional audio

– 100% range coder state agreement with the reference

– Decoded 16-bit audio differs from reference by no more than ±1

Implementation Interop Testing

● SILK decoder in progress
● Started last Thursday
● Implemented from the draft text (not the reference

implementation)
● Code is complete
● Range check passes for bitstreams tested so far

(not many)
● Actual audio output completely untested

● Hybrid modes: coming soon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

