IS-IS VPLS for Data Center Network draft-xu-l2vpn-vpls-isis-02

Xiaohu Xu (xuxh@huawei.com)

Himanshu Shah (hshah@ciena.com)

IETF82, TAIWAN

Cloud Data Center Network Requirements

Flat Layer 2 networking

- VM mobility requires extending the Layer2 domains across multiple PODs.
- Some cluster services also expect Layer2 connectivity.

Scalability

- Multi-tenancy capability (Beyond 4K VLANs).
- MAC table scalability (Millions of VMs within a data center) .

Maximize available bandwidth

- ECMP forwarding capability.
- Shortest path forwarding capability.

Fast convergence

After network failure and VM move.

Simplified provisioning and operation

Deploy VPLS in Data Center: Good News

- VPLS could meet most requirements:
 - Flat Layer 2 networking
 - Scalability
 - Multi-tenancy capability->adequate VPN instances.
 - MAC table scalability->PBB+VPLS
 - Maximize available bandwidth
 - ECMP forwarding capability.
 - Shortest path forwarding capability.
 - Fast convergence
- In addition, VPLS is a much proven L2VPN technology till now.

Deploy VPLS in Data Center: Bad News

- However, VPLS can't meet the requirement of simplified provisioning and operation very well.
 - Separate protocol(s) for VPLS (LDP and/or BGP)
 - Full-mesh PWs
 - VPLS peer configuration in LDP VPLS (w/o VPLS auto-discovery)
 - BGP peer configuration in BGP VPLS or LDP VPLS (with VPLS autodiscovery)
 - Image deploying PE at hundreds even thousands of ToRs within a single data center.

Why not a Light-weight VPLS

- Could the already deployed IGP (e.g., IS-IS) be extended a bit so as to deliver a light-weight VPLS which remains the advantages of VPLS while removing the shortcomings of VPLS?
 - □ Flat Layer 2 networking ✓
 - Scalability ✓
 - Maximize available bandwidth
 - □ Fast convergence 🗸
 - Simplified provisioning and operation
 - No separate protocol(s) for VPLS
 - No PWs
 - No VPLS peer configuration
 - No BGP peer configuration

IS-IS TLV for VPLS

VPLS Auto-discovery and Signaling

Auto-Discovery

- Each PE router could automatically discover which other PE routers are part of a given VPLS instance identified by the globally unique VPLS ID.
- PE router's configuration consists only of the identities of the VPLS instances established on this PE router, not the identities of any other PE routers belonging to that VPLS instance.

Signaling

- PE router assigns the same MPLS label for a given VPLS instance to any other PE routers.
- The VPLS label doesn't need to be globally unique.

Implications on the Control Plane

- The extended IS-IS TLV for VPLS is partially transparent to P routers.
 - P routers don't need to process the VPLS membership information contained in that IS-IS TLV, but only need to synchronize the Link State PDUs with their IS-IS neighbors.

Implications on the Data Plane

- Data encapsulation and data forwarding are not changed.
- The only change is to the data-driven MAC learning:
 - The VPLS label in the received VPLS packet is only intended to identify a given VPLS instance on the egress PE. Hence, the source IP address in the IP-based tunnel header should be resorted to identify the ingress PE of the received VPLS packet.
 - Alternatively, MAC reachability could be distributed among PE routers on the control plane so as to eliminate unknown unicast flood.

How to Deliver Mcast/Bcast/Unknown Unicast

Two options:

- Ingress Replication
 - No state needed in the core, However, sub-optimal bandwidth utilization.
- P-Multicast Tree Mode
 - Optimal bandwidth utilization. However, states required in the core.
- Operators could make the tradeoff flexibly on basis of per tenant instance.

How to Address the MAC Scalability Issue on PE Routers

PBB+VPLS

- PBB could be done at ToR switches or even at the servers.
- VPLS PE routers only need to learn B-MAC addresses.

Comments