Cloud Networking: Framework and VPN Applicability

draft-bitar-datacenter-vpn-applicability-01.txt

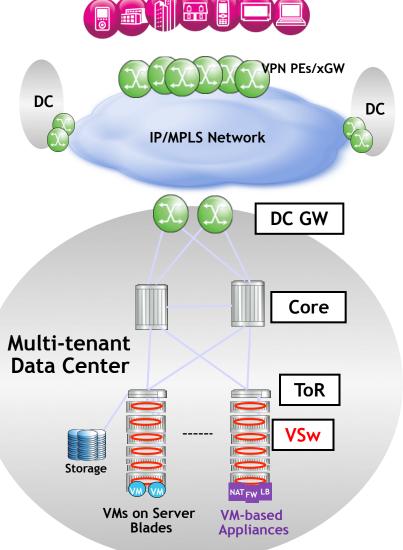
Nabil Bitar (Verizon)

Florin Balus, Marc Lasserre, and Wim Henderickx (Alcatel-Lucent) Ali Sajassi and Luyuan Fang (Cisco) Yuichi Ikejiri (NTT Communications) Mircea Pisica (BT)

> November 2011 IETF-82, Taipei, Taiwan

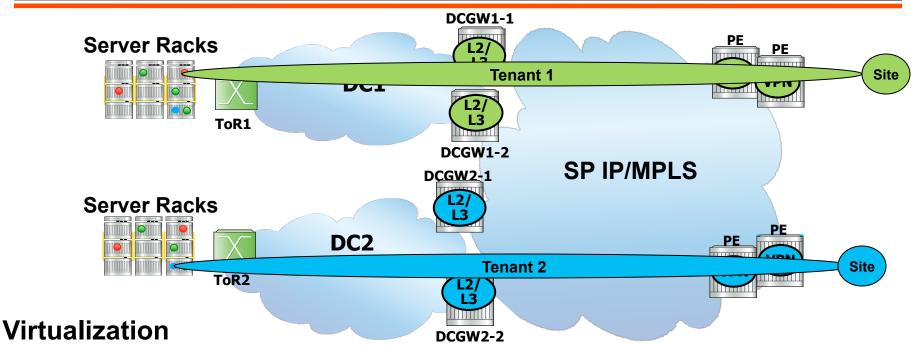
Requirements for large scale multi-tenant data centers and cloudnetworks

Applicability of existing and evolving Ethernet, L2VPN, and L3VPN technologies to multi-tenant cloud networking and tradedoffs:


- Intra-Data Center networks
- Inter-data center connectivity
 - Data centers can belong to the same data center service provider, different data center providers, the tenant, and any hybrid
- Tenant and public access to data centers
- Scenarios cloud networks

Challenges/Gaps that still require work

Cloud networking framework


- DC GW gateway to the outside world providing DC Interconnect and connectivity to Internet and VPN customers.
- Core Switch/Router high capacity core node, usually a cost effective Ethernet switch; may support routing capabilities.
- ToR or Top of Rack hardware-based Ethernet switch; may perform IP routing.
- VSw or virtual switch software based Ethernet switch running inside the server blades

Customers with Application Requirements

Multi-Tenant Data Center and Data Center-

Interconnect Requirements

- Provide for network virtualization among tenants with overlapping addresses on the same data center network infrastructure layer2 and layer3, and integrated routing and bridging
- Provide for compute and storage resources allocated to a tenant an attachment to the tenant virtual private network
- Provide connectivity between a tenant DC virtual infrastructure and the tenant sites, including tenant operated DCs
- Provide for dynamic stretching and shrinking of a tenant virtual infrastructure flexibly within a DC and across DCs
- Provide for DC operator virtual network management

Multi-Tenant Data Center and Data Center-Interconnect Requirements

Support large Scale DCs :

- Large number of tenants a tenant identified by a service ID in data plane and/or control plane.(e.g., >> 4K VLAN IDs)
- Large number of VMs and multiple per-VM virtual NICs → large number of Ethernet MACs, IP addresses and ARP entries that need to be accommodated in the data center network infrastructure
- Multicast and broadcast containment per tenant virtual domain to conserve bandwidth resources
- VM movement and network rapid convergence in the presence of a large number of tenants and VMs

Optimize network resource utilization

- Bandwidth utilization within data center, on the DC connection to the WAN, and across the WAN
- FIB utilization at routers and switches
- Control plane resource utilization on routers and switches

Multi-Tenant Data Center and Data Center-Interconnect Requirements

Path Optimization

- Provide for optimized forwarding shortest path between any two communicating endpoints in a virtual network to improve latency and network utilization efficiency
- Eliminate or reduce traffic black-holing when a VM is moved from one location to another during network transition traffic redirection until convergence to shortest path

Resiliency: Fast recovery around failure

VM Mobility

- Maintain the existing client sessions upon VM move: VM keeps the same IP and MAC address
- Expand/shrink L2/L3 domains within a DC and across DCs
- Optimal traffic forwarding: shortest path, avoid triangular routing in steady state and provide for traffic redirection during transition
- Rewrite the MAC FIBs to redirect traffic to new location
- Have a VM IP route where needed to direct traffic to the VM

Multi-Tenant Data Center and Data Center-Interconnect Requirements

- Auto-discovery by the network of a VM location with minimal network configuration touches – cater to ease of management
- Support for OAM to troubleshoot connectivity problems and provide for SLAs at the service layer (layer2 or layer3)
- Ease of introduction of new DC networking technologies in existing DC environments

Allow for the following networking models

- DC service provider and the WAN network service provider providing access to a tenant site are two different entities.
- DC service provider and the WAN network service provider providing access to a tenant site are same entities
- DC can have its own private network for its own data center connectivity or can use another network service provider

Layer 3 option

• e.g. RFC4364

Layer 2 options

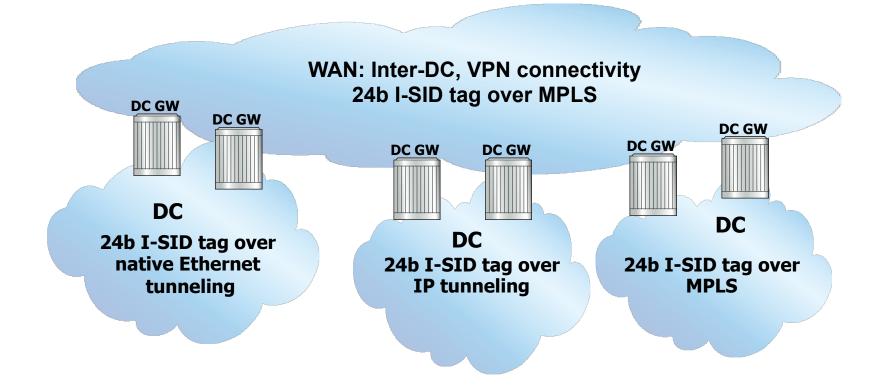
- VLANs and L2VPN toolset
- PBB and L2VPN toolset
- TRILL and L2VPN toolset
- In current draft version, PBB with L2VPN options have been detailed

Addressing L3 virtualization with IP VPNs

- Use full fledge IP VPN for L3 Virtualization inside a DC
 IP VPN advantages
 - Interoperates with existing WAN VPN technology
 - Deployment tested, provides a full networking toolset
 - Scalable core routing only one BGP-MP routing instance is required compared with one per customer/tenant in the Virtual Routing case
 - Service Auto-discovery automatic discovery and route distribution between related service instances
 - Well defined and deployed Inter-Provider/Inter-AS models
 - Supports a variety of VRF-to-VRF tunneling options accommodating different operational models: MPLS [RFC4364], IP or GRE [RFC4797]
- Connectivity models for customer IP VPN instances located in the WAN
 - DC GW may participate directly in the WAN IP VPN
 - Inter-AS Options A, B or C applicability to both Intra and Inter-Provider use cases

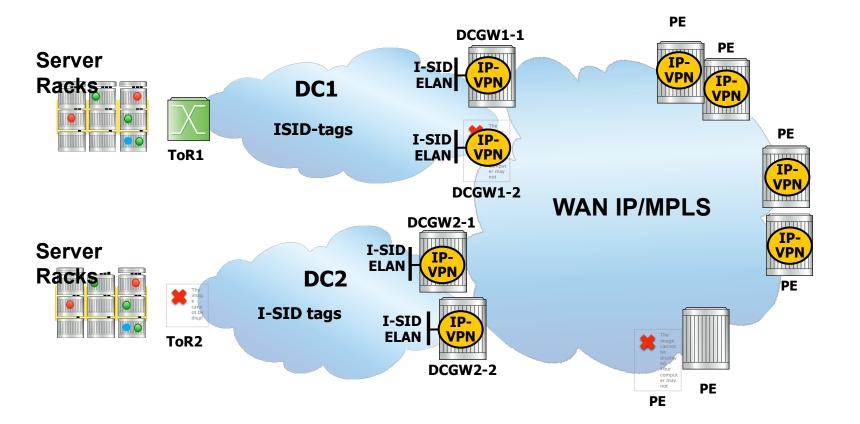
PBB + L2VPN applicability to Cloud Networking

24b ISID tag vs. 12b VLAN tag used for Tenant identification


- Expands L2 domains from 4K VLANs to 16M ISIDs
- Standardized in 2008 by IEEE inherits current and future IEEE specs (QoS, OAM, control plane etc...)
- Supported in merchant silicon, proven vendor interoperability
- Deployed in a number of large service provider networks

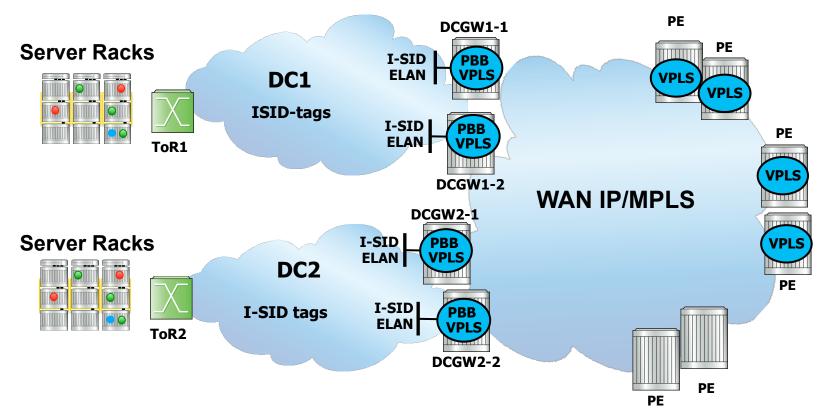
ISID tag follows the VLAN tag format

• I-Tag code point implies the presence of (VM) MAC DA, SA right after I-SID



Supported tunneling options for 24b ISID Tag

- Native Ethernet IEEE 802.1ah-2008
- Ethernet over IP (L2TPv3) or MPLS tunneling PBB-VPLS
- Other more optimized IP tunneling options could be explored

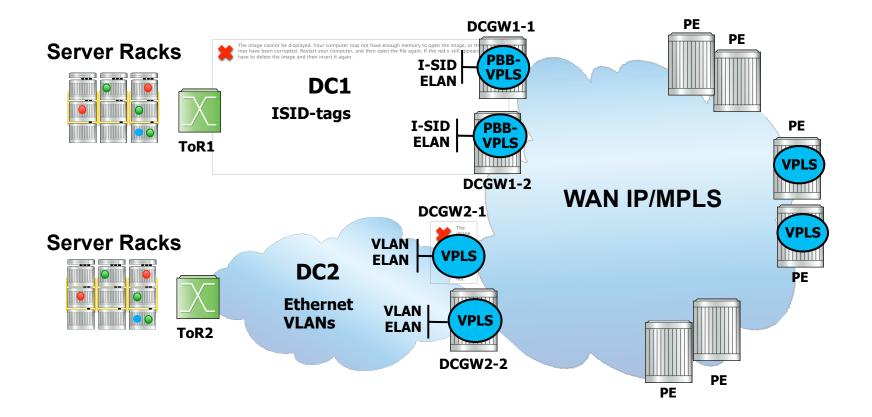

VPN interoperability w/ PBB+L2VPN IP VPN Example

PBB I-SID tag termination into IP VPN VRFs: from IP over VLAN to IP over I-SID interfaces

Same tunneling options: Native Ethernet, IP or MPLS or a mix

VPN interoperability w/ PBB+L2VPN Example

Option1: PBB I-SID termination into PBB-VPLS


DCGW translates back to regular VPLS

Option2: PBB I-SID transparently transported over PBB-VPLS

• DCGW acts as a Backbone Core Bridge: no ISID provisioning, no VM MAC awareness

Same tunneling options available: Ethernet or IP or MPLS or a mix


VLAN interoperability w/ PBB+L2VPN

Similarly with VPLS interop, DCGWs in DC1 translate PBB I-SIDs to VPLS

Alternatively DCGWs in DC2 may run PBB-VPLS and translate I-SIDs to VLANs

PBB and L2VPN - control plane options

- Re-use of IP Routing toolset: IS-IS, BGP based control plane choices
- Service Auto-discovery, minimize operator provisioning
 - Hypervisor to ToR VM discovery methods: VDP (IEEE 802.1Qbg), IGMP, SDN, others
- Supports L2 multipathing and Active/Active Multihoming
- Fast convergence, Traffic Steering
- Inter-AS expansion with BGP

- Discussion on VM Mobility, Optimal traffic forwarding see draftraggarwa-data-center-mobility-01.txt
- ARP suppression discussed in PBB-EVPN (draft-sajassi-l2vpnpbb-evpn-02.txt) and EVPN (draft-raggarwa-sajassi-l2vpnevpn-04.txt)
- ARP Broadcast Reduction for Large Data Centers (draft-shaharmd-arp-reduction-02.txt)

Component	PBB+L2VPN toolset
Tenant ID	24b tag
Tag format	IEEE 802.1ah I-SID
VM MAC hiding	Yes
Tunneling options	IP, MPLS, Ethernet
IP tunnel format	PW/L2TPv3
IP core routing	Yes

PBB+L2VPN and **DC** Challenges

Draft	
Requirements	VPN Applicability
Service Scale	Yes (16M)
MAC scale	Yes (overlay)
Flood containment	Yes (Ethernet, MPLS) TBD for IP overlay
Multi-	Yes (IS-IS, BGP)
Multicast efficiency	P2MP LSPs, TBD (IP)
Interop	Yes
VM Mobility	Work in progress

- IP tunneling optimization for I-SID tag transport
- Network auto-provisioning and flood containment through the auto-discovery of VM and VM groups: agree on mechanism(s)
- Broadcast, Multicast handling over IP Core requires work
- Tunnel and Service Address Translation between Cloud Provider and Tenant/Network Service Provider