
PPSP Peer Protocol

draft-gu-ppsp-peer-protocol
PPSP WG

IETF 82 Taipei

Rui Cruz (presenter)
Yingjie Gu, Jinwei Xia, Mário Nunes,

David Bryan, João Taveira

Background
•  The PPSP Peer Protocol (as well as the PPSP Tracker

protocol) are bound to VoD streaming or Live streaming of
multimedia, not “file sharing”.

•  Each Peer, from the perspective of a Media Player can be
seen as part of a distributed “streaming server”

•  PPSP should be open to support:
–  Structured Media streaming (SVC/MDC/MVC/multi-bitrate)
–  Unstructured Media streaming (AVC or other formats)
–  but not being involved in the decoding/encoding processes.

•  The Media Player application is the entity that should
"know" (via a requester/re-assembler module) how and
what to request (to a Supplier Peer) and decode the
received Structured Media in order to “prepare” it to present
to the User.

Terminology
•  Scalable Streaming (Structured Media)

– Multiple Description Coding (MDC): multiple
additive descriptions can be independently
played-out to refine the quality of the video when
combined together.

– Scalable Video Coding (SVC): nested dependent
enhancement layers (hierarchical levels of
quality), refine the quality of lower layers, from the
lowest level (the playable Base Layer).

– Multiple View Coding (MVC): multiple views allow
the video to be played in stereoscopic 3D when
the views are combined together.

Terminology
•  SEGMENT (of partitioned media)

–  is a resource that can be identified by an ID, an
HTTP-URL or a byte-range, and used by a Peer
for the purpose of storage, advertisement and
exchange among peers.

•  SUBSEGMENT (of partitioned media)
–  the smallest unit within segments which may be

indexed at the segment level.
•  CHUNK

–  is a generic term used to refer to a SEGMENT or
SUBSEGMENT of partitioned streaming media.

Terminology

•  LEECH Peer
– A Peer that requests specific media content

from other Peers.
•  SEED Peer

•  A Peer that can supply all the media content chunks.

•  Sender Peer
– A Peer that can supply the corresponding

chunks requested by a Leech Peer.

Main functional entities related with
PPSP

•  Client Media Player
–  is the entity providing a direct interface to the end user at the

client device, and includes the functions to select, request,
decode and render contents.

–  interfaces with the Peer using request and response
mechanisms.

•  Peer
–  Is a logical entity at the client device embedding the P2P core

engine, with a client serving side interface to respond to Client
Media Player requests and a network side interface to exchange
data and PPSP signaling with Trackers and with other Peers.

•  Tracker
–  is a logical entity that maintains the lists, as well as the status, of

PPSP active peers storing and exchanging chunks for a specific
media content.

Design Philosophy I
•  Support of Structured Media Streaming

–  Scheduling of structured media chunks can be optimized
from monitoring of network and host conditions

–  Decoupling download/upload from presentation of media
(Peer is not involved in media decoding)

–  Each Peer not only downloads the stream of interest
(being presented) but also contributes on other streams
(other swarms)

–  Peers can be assigned to “distribution groups”
•  Bandwidth adaptation

–  In bandwidth-rich periods the media quality is maximized
(average up bandwidth > full media rate)

–  In bandwidth-deficient periods the media quality is reduced
(average up bandwidth < full media rate)

Design Philosophy II

•  Chunk-based (mesh) pull-mode
– Peers self-organize (by proximity, media chunk

availability, etc.)
– Chunks (segments/subsegments) are

specifically requested to suppliers and
scheduled:

•  From the Supplier side in a pair-wise bandwidth
allocation, i.e., higher upload -> more bandwidth shared
-> more segments -> higher media rate

•  From the Receiver side, by periodic evaluation of
network conditions and suppliers (dropping the worst)

Protocol Overview
•  The signaling steps for a Peer (LEECH) wishing to participate

either in a Live streaming or a VoD or offline video is as
follows:
1.  The leech peer using PPSP Peer Protocol messages,

establishes a connection to at least one of the peers in the
Peerlist, based on the known PeerID and Peer IP address.

2.  The peer sends request to selected candidate peers including
one or more of the following information:

a.  Request for the content availability;
b.  Notify own content availability to the candidate peer;
c.  Request peer properties of the candidate peer;
d.  Notify own peer properties to the candidate peer;
e.  Request for additional peerlist;
f.  Negotiates Data Transport protocol.

3.  The peers exchange the actual chunks of data, using the
mechanism/protocol negotiated.

Peer Signaling Primitives

•  GET_CHUNKMAP:
– sent from a Leech peer to one or more remote

peers in order to receive the map of chunks
(and/or buffer map) of a content (of a swarm
identified by SwarmID) the other peer
presently stores.

Peer Signaling Primitives

•  GET_CHUNK:
– sent from a leech peer to sender peer in order

to request the delivery of specific media
content chunks.

Peer Signaling Primitives

•  GET_STATUS:
– sent from a leech peer to one or more remote

peers in order to request the corresponding
properties and status of the sender peers.

Peer Signaling Primitives

•  GET_PEERLIST:
– sent from a leech peer to one or more remote

peers in order to refresh/update the list of
active peers in the swarm and corresponding
properties.

Peer Signaling Primitives

•  TRANSPORT_NEGOTIATION:
– sent from a leech peer to a sender peer in

order to negotiate the underlying data
transport protocol. Leech peer may provide a
set of transport protocols it supports to sender
peer, and leave send peer to choose its
preferences.

THANK YOU !

Comments are welcomed!

Media Presentation Description
•  Provides formats to enable efficient and high-quality

delivery of streaming services over the Internet
•  Enables reuse of existing technologies (containers,

codecs, DRM etc.)
•  Enables very high user-experience (low start-up, no

rebuffering, trick modes)
•  Enables selection based on network capabilities,

device capabilities, user preferences
•  Moves intelligence from network to client,
•  Enables distribution flexibility (e.g., live, on-demand,

time-shift viewing)
•  Provides Content Descriptors for Protection,

Accessibility, Rating, etc.

