PPSP Peer Protocol

draft-gu-ppsp-peer-protocol PPSP WG IETF 82 Taipei

Rui Cruz (presenter) Yingjie Gu, Jinwei Xia, Mário Nunes, David Bryan, João Taveira

Background

- The PPSP Peer Protocol (as well as the PPSP Tracker protocol) are bound to VoD streaming or Live streaming of multimedia, not "file sharing".
- Each Peer, from the perspective of a Media Player can be seen as part of a distributed "streaming server"
- PPSP should be open to support:
 - Structured Media streaming (SVC/MDC/MVC/multi-bitrate)
 - Unstructured Media streaming (AVC or other formats)
 - but not being involved in the decoding/encoding processes.
- The Media Player application is the entity that should "know" (via a requester/re-assembler module) how and what to request (to a Supplier Peer) and decode the received Structured Media in order to "prepare" it to present to the User.

Terminology

- Scalable Streaming (Structured Media)
 - Multiple Description Coding (MDC): multiple additive descriptions can be independently played-out to refine the quality of the video when combined together.
 - Scalable Video Coding (SVC): nested dependent enhancement layers (hierarchical levels of quality), refine the quality of lower layers, from the lowest level (the playable Base Layer).
 - Multiple View Coding (MVC): multiple views allow the video to be played in stereoscopic 3D when the views are combined together.

Terminology

- SEGMENT (of partitioned media)
 - is a resource that can be identified by an ID, an HTTP-URL or a byte-range, and used by a Peer for the purpose of storage, advertisement and exchange among peers.
- SUBSEGMENT (of partitioned media)
 - the smallest unit within segments which may be indexed at the segment level.
- CHUNK
 - is a generic term used to refer to a SEGMENT or SUBSEGMENT of partitioned streaming media.

Terminology

- LEECH Peer
 - A Peer that requests specific media content from other Peers.
- SEED Peer
 - A Peer that can supply all the media content chunks.
- Sender Peer
 - A Peer that can supply the corresponding chunks requested by a Leech Peer.

Main functional entities related with **PPSP**

Client Media Player

- is the entity providing a direct interface to the end user at the client device, and includes the functions to select, request, decode and render contents.
- interfaces with the Peer using request and response mechanisms.

• Peer

 Is a logical entity at the client device embedding the P2P core engine, with a client serving side interface to respond to Client Media Player requests and a network side interface to exchange data and PPSP signaling with Trackers and with other Peers.

Tracker

 is a logical entity that maintains the lists, as well as the status, of PPSP active peers storing and exchanging chunks for a specific media content.

Design Philosophy I

- Support of Structured Media Streaming
 - Scheduling of structured media chunks can be optimized from monitoring of network and host conditions
 - Decoupling download/upload from presentation of media (Peer is not involved in media decoding)
 - Each Peer not only downloads the stream of interest (being presented) but also contributes on other streams (other swarms)
 - Peers can be assigned to "distribution groups"
- Bandwidth adaptation
 - In bandwidth-rich periods the media quality is maximized (average up bandwidth > full media rate)
 - In bandwidth-deficient periods the media quality is reduced (average up bandwidth < full media rate)

Design Philosophy II

- Chunk-based (mesh) pull-mode
 - Peers self-organize (by proximity, media chunk availability, etc.)
 - Chunks (segments/subsegments) are specifically requested to suppliers and scheduled:
 - From the Supplier side in a pair-wise bandwidth allocation, i.e., higher upload -> more bandwidth shared -> more segments -> higher media rate
 - From the Receiver side, by periodic evaluation of network conditions and suppliers (dropping the worst)

Protocol Overview

- The signaling steps for a Peer (LEECH) wishing to participate either in a Live streaming or a VoD or offline video is as follows:
 - 1. The leech peer using PPSP Peer Protocol messages, establishes a connection to at least one of the peers in the Peerlist, based on the known PeerID and Peer IP address.
 - 2. The peer sends request to selected candidate peers including one or more of the following information:
 - a. Request for the content availability;
 - b. Notify own content availability to the candidate peer;
 - c. Request peer properties of the candidate peer;
 - d. Notify own peer properties to the candidate peer;
 - e. Request for additional peerlist;
 - f. Negotiates Data Transport protocol.
 - 3. The peers exchange the actual chunks of data, using the mechanism/protocol negotiated.

• GET_CHUNKMAP:

 sent from a Leech peer to one or more remote peers in order to receive the map of chunks (and/or buffer map) of a content (of a swarm identified by SwarmID) the other peer presently stores.

• GET_CHUNK:

 sent from a leech peer to sender peer in order to request the delivery of specific media content chunks.

• GET_STATUS:

 sent from a leech peer to one or more remote peers in order to request the corresponding properties and status of the sender peers.

• GET_PEERLIST:

 sent from a leech peer to one or more remote peers in order to refresh/update the list of active peers in the swarm and corresponding properties.

• TRANSPORT_NEGOTIATION:

 sent from a leech peer to a sender peer in order to negotiate the underlying data transport protocol. Leech peer may provide a set of transport protocols it supports to sender peer, and leave send peer to choose its preferences. Comments are welcomed!

THANK YOU !

Media Presentation Description

- Provides formats to enable efficient and high-quality delivery of streaming services over the Internet
- Enables reuse of existing technologies (containers, codecs, DRM etc.)
- Enables very high user-experience (low start-up, no rebuffering, trick modes)
- Enables selection based on network capabilities, device capabilities, user preferences
- Moves intelligence from network to client,
- Enables distribution flexibility (e.g., live, on-demand, time-shift viewing)
- Provides Content Descriptors for Protection, Accessibility, Rating, etc.