
PPSP Tracker Protocol

draft-gu-ppsp-tracker-protocol
PPSP WG

IETF 82 Taipei

Rui Cruz (presenter)
Mário Nunes, Yingjie Gu, Jinwei Xia,

David Bryan, João Taveira, Deng Lingli

Main functional entities related with
PPSP

•  Client Media Player
–  is the entity providing a direct interface to the end user at the

client device, and includes the functions to select, request,
decode and render contents.

–  interfaces with the Peer using request and response
mechanisms.

•  Peer
–  Is a logical entity at the client device embedding the P2P core

engine, with a client serving side interface to respond to Client
Media Player requests and a network side interface to exchange
data and PPSP signaling with Trackers and with other Peers.

•  Tracker
–  is a logical entity that maintains the lists, as well as the status, of

PPSP active peers storing and exchanging chunks for a specific
media content.

Terminology
•  SEGMENT (of partitioned media)

–  is a resource that can be identified by an ID, an
HTTP-URL or a byte-range, and used by a Peer
for the purpose of storage, advertisement and
exchange among peers.

•  SUBSEGMENT (of partitioned media)
–  the smallest unit within segments which may be

indexed at the segment level.
•  CHUNK

–  is a generic term used to refer to a SEGMENT or
SUBSEGMENT of partitioned streaming media.

Changes since version 5
•  This draft corresponds to an enhanced merge of:

–  draft-gu-ppsp-tracker-protocol-05
–  draft-cruz-ppsp-http-tracker-protocol-01

•  Includes detailed messages syntax and XML-Schema
•  Addresses Authentication & Security aspects based on SASL
•  Adds Support for NAT Traversal service via ICE (STUN-Like

Tracker)
•  Can Support DECADE interoperation
•  Is compatible with Distributed trackers organized by RELOAD
•  Provides Full PPSP Requirements compliance.
•  Changes in messages

–  Removed STAT_QUERY message
–  Re-designed FIND message
–  Re-designed JOIN message

Protocol Design
•  The PPSP Tracker Protocol is not used to exchange actual content

data with Peers, but information about which Peers can provide
which pieces of content.

•  The protocol design supports distributed tracker architectures,
providing robustness to the streaming service in case of tracker
node failure.

•  The PPSP Tracker Protocol is a request-response protocol.
–  Requests are sent, and responses returned to these requests.
–  A single request generates a single response.

•  The Tracker can provide NAT traversal services (STUN-like Tracker)
by discovering the reflexive address of a Peer via PPSP Tracker
Protocol messages

Protocol Overview
•  To join an existing P2P streaming service and to

participate in content sharing, any Peer must locate a
Tracker and:
–  Establish a CONNECTion to the system
–  JOIN a swarm of Peers streaming a content
–  Obtain or FIND a selected List of those Peers

•  A Peer can LEAVE a swarm but keep active in the
P2P streaming service for other swarms

•  A Peer sends STAT-REPORTs to the Tracker to inform
about its status and supply statistic information.

•  To terminate all its activity in the P2P streaming
service the Peer DISCONNECTs for the Tracker.

A Typical PPSP Session
Terminal

P2P 1
(Leech) TrackerMedia Player

HTTP POST (MPD) CONNECT
OK

JOIN SwarmID_1, LEECH
OK (Peer List)

P2P 2
(Seed)

STAT_REPORT
OK

GET_CHUNK
OK (Chunk/Layer)HTTP OK (Chunk/Layer)

HTTP GET Chunk/Layer GET_CHUNK
OK (Chunk/Layer)HTTP OK (Chunk/Layer)

STAT_REPORT
OK

STAT_REPORT
OK

HTTP GET Chunk/Layer

HTTP OK (Chunk/Layer)
GET_CHUNK

OK (Chunk/Layer)

GET_CHUNKMAP
OK (ChunkMap)

Tracker Protocol

Peer Protocol

DISCONNECT
OK

STAT_REPORT
OK

HTTP GET Chunk/Layer
HTTP OK

JOIN , SwarmID_2, LEECH
OK (Peer List)

LEAVE SwarmID_1
OK

P2P 3
(Leech)

Request Messages

(IPv4, IPv6) of its network interfaces and attributes related with NAT traversal. PeerID, the IP addresses
•  The Tracker records the

PeerID
, connect-time, peer IP addresses and link status. •  The method allows a security layer to be

negotiated in the authentication protocol exchange
between the Peer and the Tracker •  The method allows a security layer to be

negotiated in the authentication protocol exchange
between the Peer and the Tracker

Request Messages
VoD

or Live streaming modes): •  The tracker adds the Peer to the candidate peers list for the swarm.
•  The joining peer may have none or just some chunks

(LEECH), or all the chunks (SEED/LIVESEED) of a
content.

•  The type of participation in the swarm is announced
and can be SEED, LIVESEED or LEECH
•  The Peer may specify the starting Chunk of a content

when joining, restrict the number of candidate peers to
receive form the Tracker and provide NAT capabilities. and can be SEED, LIVESEED or LEECH

•  The Peer may specify the starting Chunk of a content
when joining, restrict the number of candidate peers to
receive form the Tracker and provide NAT capabilities.

Request Messages

•  Is initiated by the peer, periodically while active.
•  Contains activity statistics.
•  Contains

ChunkMaps for all the streaming contents the Peer is currently joined. for all the streaming
contents the Peer is currently joined.

Request Messages

: – allows peers to request to the Tracker the :
peer list for the swarm or for specific chunks

content, restrict the number of candidate peers to
capabilities. receive form the Tracker and provide NAT
capabilities.

Request Messages

– used by a Peer to notify the Tracker that it no
longer wish to participate in a particular

swarm (for both
VoD or Live streaming modes):

•  The Tracker deletes the corresponding activity
records related to the peer.

•  The Peer may however continue active in other
swarms. •  The Peer may however continue active in other

swarms.

Request Messages

– Used when the Peer intends to leave the :
system and no longer participate in any

swarm: system and no longer participate in any
•  The Tracker deletes the corresponding activity swarm:

records related to the peer (including its status and •  The Tracker deletes the corresponding activity
all content status for all swarms)

lists and from all swarms the peer was joined. •  The Tracker MUST remove the peer from the peer
lists and from all swarms the peer was joined.

Messages Syntax

Requests and Responses with XML
Requests and Responses with XML
encoded message bodies.

 Content-
: <ContentLenght> Content-Type: <
ContentType> <

Request_Body> Request_Body>

> <StatusMsg> Content-
Lenght: <ContentLenght> Content-Type: <

ContentType> Content-Encoding: <
ContentCoding> <

> Response_Body>

Messages Syntax

PeerID
) and authentication token. •  The Response messages MAY use Content-Encoding entity-header with "

gzip
" compression scheme. header with "gzip" compression scheme.

 version="#.#"> <Method>***</Method> <Response>***</Response>
<

PeerID> <AuthToken
>***</AuthToken> <!-- on Request except CONNECT--> <TransactionID

TransactionID> ...XML information specific of the Method... </
ProtocolName

</ProtocolName>

Final Remarks

–  Structured Media streaming (SVC/MDC/MVC/multi-bitrate)

•  The Media Player application is the entity that should
"know" (via a requester/re-assembler module) how

and what to request (to a Peer) and decode the
received Structured Media (from the Peer) in order to

“prepare” it to present to the User. "know" (via a requester/re-assembler module) how
and what to request (to a Peer) and decode the
received Structured Media (from the Peer) in order to
“prepare” it to present to the User.

•  The Authors would like to ask for the
Tracker Protocol defined in this draft to be
adopted as PPSP Working Group draft

THANK YOU !

Comments are welcomed!

