RPL Applicability in Industrial Networks IETF 82

draft-phinney-roll-rpl-industrial-applicability-00

Tom Phinney Pascal Thubert Robert Assimiti

Culprits and Status

- Tom Phinney, editor
 - US Technical Advisor for IEC/SC 65C (http://iec.ch)
 - Chair, IEC/SC 65C/WG 1 and IEC/SC 65C/MT
- Robert Assimiti, co-author
 - ISA100.11a co-editor (http://isa.org)
- Pascal Thubert, co-author
 - ISA100.11a co-editor
 - ROLL/RPL co-editor

Process Automation Requirements Primer

- Typically utilize deterministic and centralized networks
- Scalability:
 - -Hundreds per network
 - –Tens per backbone router
- Extremely high reliability -> dire consequences associated with communication failure
- Path diversity a must
- Typically tightly time synchronized (within uSeconds)
- "Shallow" wireless networks typically up to 3 hops
- Must meet latency bounds: sub-second
- Relies heavily on publication/subscription (push) model for periodic data collection: as frequent as every 100 ms
- Need to support for P2P control loops
- Long battery life: 5 -10 years

Wireless Industrial standards

- Communication reliability requirements implicitly mandate path diversity for MP2P, P2MP and P2P traffic flows
- Current routing paradigm in ISA100.11a and WiHART standards is DODAG based but takes place at the link-layer (mesh-under)
- Graphs are computed by a system manager (centralized PCE with high degree of determinism)

Traffic Classes

Safety	0	Emergency action	Always critical
Control	1	Closed loop Regulatory control	Often critical
	2	Closed loop Supervisory control	Usually non-critical
	3	Open loop control	Human in the loop
Monitoring	4	Alerting	Short-term consequences
	5	Logging Downloading/uploading	No immediate consequences

Data Flows

- Publish/subscribe (push)
 - One way, periodic communication
 - Not acknowledged end-to-end
- Source/sink
 - Devices in set 1 send messages to devices in set 2 (alerts, alarms, etc)
 - Infrequent, intermittent and bursty traffic
- Peer-to-multipeer (P2MP)
- Peer-to-peer (P2P)
 - Device A sends data directly to devices B with high periodicity
 - Allows for control-loops
- Duo-cast (or N-cast)

RPL MOPs versus Data Flows

	L 	L
Paradigm\RPL MOP	_	' Mode of operation +====================================
Peer-to-peer RPL P2		
P2P line-of-sight	RPL base	2 (storing) with multicast DAO
P2MP distribution	RPL base	3 (storing with multicast)
		1 or 2 (storing or not-storing)
Source-sink RPL base		0 (no downward route)
++		
+		

RPL Instances

- Nodes to participate in potentially multiple RPL instances that meet different optimization goals
 - Minimize and guarantee latency
 - Maximize reliability
 - Minimize aggregate power consumption
 - Some of these optimization goals have to be met concurrently through constraints
- Nodes to participate in at least one instance that has a virtual root -> allowing communications over the backbone infrastructure (subnet to subnet)

Objective Functions

• OF0:

- Wireless industrial communications are subject to swift and temporary variations due to the nature of the environment (metal pipe jungles) causing link related metrics to vary
- Hysteresis is needed in order to ensure stability

MRHOF

- A step in the right direction for industrial networks
- Not all metrics that need to be balanced are additive
 - Example: packet success rate (ETX) for a device with rank=1 versus packet success rate (ETX) for a device with rank=3
 - Look into multiplicative metrics
- Need a more complex OF that:
 - Takes in consideration multiple constraints
 - Balances (weighted sum) multiple additive and multiplicative metrics

Storing versus Non-storing Mode

- Support for storing mode is imperative in wireless process automation networks
- Maintaining state does not cost too much
 - Typically <100 nodes per backbone router
 - Shallow multi-hop networks
 - Lots of devices with low rank (networks are planned and deployed that way)

Food for Thought

- How well does RPL interact with a centralized and deterministic paradigm?
- Clock synch packets (currently link layer advertisements) need to be synched with DIO transmissions
- Trickle timer considerations
- DODAG repair
 - Global repair increasing the DODAG version must be subject to explicit consent from plant administrator since it could potentially result in plant shutdown
 - Local repair actions need to be communicated and approved by PCE (system manager)