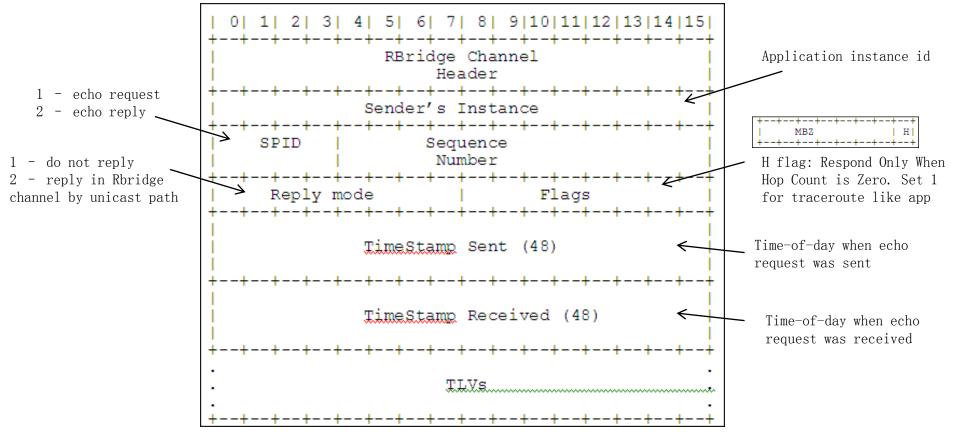

RBRIDGE MULTI-DESTINATION OAM

Yizhou Li Weiguo Hao David Michael Bond Vishwas Manral

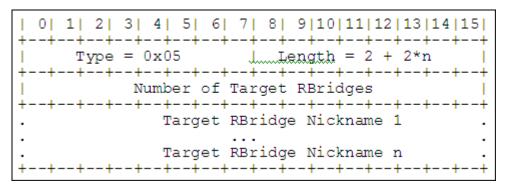
Motivations

Multi-destination frame takes the different path from the unicast frame

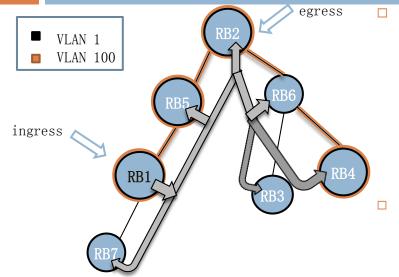


For diagnostic purpose, we may want to know the following:

- Who are the leaf nodes of a tree in a VLAN? (leaf node: RB advertises its interest of the inner Vlan)
- 2. Check the connectivity to target(s) in a tree
- 3. Trace a target in a tree to find the failed hop
- We need OAM messages to support the checking on the multi-destination path in addition to the unicast path


New Channel Protocol

Use RBridge Channel, define a new OAM channel protocol for Echo in the Long Format

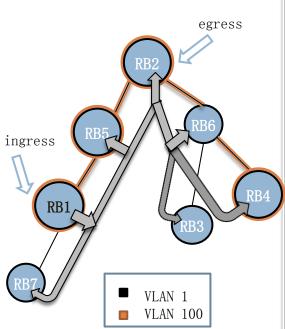

TLV

Target Rbridge

Jitter

Operations

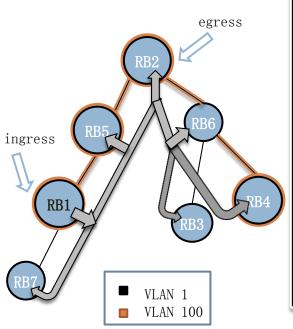
Sending echo request


- Inner. MacDA: All-Egress-Rbridges
- □ Inner.VLAN: Defaults to 1. It can be any enabled VLAN
- H(Respond Only When Hop Count is Zero) flag: 1 for traceroute like app, 0 for ping like app
- Target TLV: optional. When not present, it means unspecified target.
- □ Jitter TLV: optional.

Receiving echo request

- Replicate the frame to the control plane for processing (ethertype + Dmac), at the same time, do the normal multi-destination data forwarding
- H flag is not set
 - Unspecified target: leaf node in the VLAN responds echo reply
 - Specified target: leaf node owning one of the targets in the VLAN responds echo reply
- H flag is set: process only when hop count is 1 in the incoming frame
 - Unspecified target: send back error notification
 - Specified target: send back echo reply if it is the target; send back error notification if it is not the target (error notification can be suppressed if it is not in the path to the target according to LSDB)

Sample Application - ping


[system] ping trill-multicast [-c count | -h hop-count-value | -m interval | -t time-out] * root <root-nickname> inner-vlan <innervlan-value> [target leaf-nickname *]

[~RB0x1111]ping trill-multicast -c 3 root 0x2222 inner-vlan 100 PING trill-multicast root 0x2222 vlan 100: 20 data bytes, press CTRL C to break Reply from 0x5555: bytes=20 sequence=1 hc=63 time=2 ms Reply from 0x2222: bytes=20 sequence=1 hc=62 time=2 ms Reply from 0x4444: bytes=20 sequence=1 hc=60 time=3 ms Reply from 0x5555: bytes=20 sequence=2 hc=63 time=2 ms Reply from 0x2222: bytes=20 sequence=2 hc=62 time=3 ms Reply from 0x4444: bytes=20 sequence=2 hc=60 time=3 ms Reply from 0x5555: bytes=20 sequence=3 hc=63 time=2 ms Reply from 0x2222: bytes=20 sequence=3 hc=62 time=4 ms Reply from 0x4444: bytes=20 sequence=3 hc=60 time=4 ms -- 0x5555 ping statistics ---Packets: Sent = 3, Received = 3, Lost = 0 (0% loss) Round-trip min/avg/max = 2/2/2 ms - 0x2222 ping statistics ----Packets: Sent = 3, Received = 3, Lost = 0 (0% loss) Round-trip min/avg/max = 2/3/4 ms -- 0x4444 ping statistics ----Packets: Sent = 3, Received = 3, Lost = 0 (0% loss) Round-trip min/avg/max = 3/3/4 ms

Sample Application - tracert

[system]tracert trill-multicast [-h hop-count-value | -t time-out] *
root <root-nickname> inner-vlan <innervlan-value> [target leaf-nickname]

$[\ \ RB0x1111]\ tracert\ trill-multicast\ root\ 0x2222\ inner-vlan\ 100\ target\ 0x4444$					
Hop Reply	RBridge	Time (ms)	InPortId	PreRBNickname	
0	0x1111	0	0xFFFF	0x1111	
1	0x5555	2	0x0001	0x1111	
2	0x2222	2	0x0002	0x5555	
3	0x6666	4	0x0001	0x2222	
4	0x4444	5	0x0003	0x6666	

Next step?

- □ Do we want oam on multi-destination path?
- using a new channel protocol or the same protocol as that for unicast path oam but with diff SPID?

□ Pruning:

- How to achieve CAS(Channel associated signaling) pruning? (Borrowing CAS term here: referring to data-path associated OAM. make sure the OAM messages follow the exact data path, and are pruned in the exact way as real multi-destination data frame)
 - Make Dmac a real multi-destination data MAC, but Smac a special MAC?
 - Not strict CAS: use TLV to carry pruning info for control plain processing?

Pruning capability TLV: No prune/VLAN pruned/VLAN+MAC pruned/..?