RTP Payload Format for High Efficiency Video Coding
draft-schierl-payload-rtp-h265-00.txt

Thomas Schierl, HHI
thomas.schierl@hhi.fraunhofer.de

Stephan Wenger, Vidyo
stewe@stewe.org

Ye-Kui Wang, Qualcomm
yekuiw@qualcomm.com

Miska Hannuksela, Nokia
Miska.Hannuksela@nokia.com
High Efficiency Video Coding (HEVC)

• HEVC under development by JCT-VC –
 Joint Collaborative Team on Video Coding of ITU-T and ISO/IEC
 – 300+ people, meeting every 3 months for 10 days; up to 1000 proposal docs per meeting.
• Draft standard is now at Committee Draft (CD) level
 • Finalization planned for late 2012 as “MPEG-H Video” and “ITU-T Rec. H.265”
• Performance target: Bitrate reduction by 50% compared to H.264 High Profile
• Standard optimized for resolutions beyond “HD” (i.e. 4k, 8k)
• Use cases:
 • Video Conferencing
 • Internet video streaming
 • high bit-rate entertainment-quality video...
• Extensions are expected for 3D and Scalable Coding
High Efficiency Video Coding (HEVC) (cont.)

- Hybrid video codec approach of predictive transform and entropy coding
- At present: Main Profile, and many Levels supporting QCIF to 8k and beyond; profile/level discussion not finished
- Conceptual split between Video Coding Layer (VCL) and Network Abstraction Layer (NAL)
- Higher coding efficiency in VCL achieved by...
 - Bigger Block sizes (up to 64x64)
 - Large sets of transforms
 - Decoupling of prediction block size and transform block size, quadtree structure approach
 - Additional in-loop filters (Deblocking, Sample-Adaptive Offset, and Adaptive Loop Filter)
HEVC Network Abstraction Layer

- NAL unit header (two octets length, different wrt. H.264!)
 - Co-serves as payload header
 - Forbidden bit – 1bit
 - NAL reference idc – 1bit
 - NAL unit type – 6bit
 - TID – Temporal Level Indicator – 3bit (similar to SVC/RFC6190)
- Parameter Sets:
 - Sequence Parameter Sets (SPS)
 - Picture Parameter Sets (PPS)
 - Adaptation Parameter Sets (APS) (new wrt. H.264!)
- Random Access via..
 - IDR - Instantaneous Decoder Refresh (IDR)
 - CRA – Clean Random Access (Open GOP) (new wrt. H.264!)
 - TLA – Temporal Layer Access (similar to SVC)
- SEI concept
HEVC Parallelization features

- HEVC acknowledges decoding complexity and high-level parallel decoding architecture through its syntax.
- Profiling of parallel processing tools not yet finalized in JCT-VC
- We expect that the payload format need to provide support for signaling of parallelization approach in SDP.
- Goal: Efficient use of multi-processor/core platforms
- Slices
- Tiles (different wrt. H.264!)
 - Rectangular parts of the picture, borders defined in parameter sets
 - Change in scan order; prediction is interrupted across tile boundaries
- Wavefront Parallel Processing (WPP, different wrt. H.264!)
 - Syntax support for a common decoding implementation strategy based on block lines
HEVC payload draft overview

• Based on H.264 payload format RFC 3984 and successors

• Packet Types:
 • Single NAL unit packet ("Type A" only)
 • Single Time Aggregation Packet (Type A and B)
 • Fragmentation Unit (Type A and B)

• Packetization modes:
 • Mode 1: Transmission in decoding order
 • Mode 2: Transmission out of decoding order

• Draft registers new media sub type: “H265”

• Simple SDP example:
 m=video 49170 RTP/AVP 98
 a=rtpmap:98 H265/90000
 a=fmt:98 profile-level-id=UVWXYZ;packetization-mode=1;sprop-parameter-sets=<<...>>
Questions to the WG

• Is anyone here interested in “Simple” packetization mode?
 • Mode was introduced in RFC 3984 for compatibility with ITU-T Rec. H.241, which incorporated the text of an early draft to RFC 3984.
 • ITU couldn’t wait for IETF, decided to publish text themselves
 • IETF decided to include simple packetization mode for backward compatibility

• Tradeoff
 • “Force” implementers to implement all packet types (1000 lines of code?)
 • One fewer negotiated parameter of payload format