
Dragonfly: A PAKE Scheme

Dan Harkins

IETF 83

Paris, France

• Plaintext passwords (1986 to 1995 or so)
– PAP-like exchange– completely broken
– Outlawed by Jeff Schiller

• Password derived data (90s to present)
– Transmit a hash of the password with nonces– susceptible to dictionary

attack
– Still used today (EAP-GPSK, TLS-PSK, IKE PSK, etc)

• PAKE scheme (2007 - ???)
– Use a zero-knowledge password protocol– secure!

• Protocols that are susceptible to dictionary attack are on the Standards
Track while those that are resistant to dictionary attack are Informational!

The Rise of Password Protocols in the IETF

PAP!

EAP-GPSK,
TLS-PSK TLS-SRP,

EAP-pwd

Uses for PAKEs

• Certificate-less HTTPS
– Mitigates the popular and insecure self-signed cert + PAP
– No more captive portal
– No need to rely on 3rd party to ensure secure connection

• Robust, misuse-resistant, security
– Eliminates the need for requiring long, random binary shared

secrets <wink, wink> with PSK-based schemes
– Realistic security in most probable deployment

• Parlay a simple token into a user/device cert
• Any commodity device with a user-interface for

configuration that must communicate over a network
– Most people don’t understand certificates; expecting people to

provision their devices with a certificate is naïve
– Ma and Pa Kettle do not have security clue

What does this have to do with CFRG?

• There is resistance to PAKEs in the IETF

– Questions about security always come up

– Resistance results in promulgation of protocols
that are insecure in their most likely usage

• CFRG can help vet PAKEs to allow WGs to have
more confidence in adopting them

– For example, ….

A Key Exchange Called “dragonfly”

• Yet another PAKE? Yes

• Motivation
– Symmetric, true peer-to-peer protocol (either side can

initiate and both can initiate simultaneously)

– Use both ECC and FFC and not require special domain
parameter sets

– Don’t bind a user to one particular domain parameter set

– No IPR issues

• None of the existing schemes were appropriate

• It’s a fun problem to work on too

• Commit then confirm protocol
– A party may commit at any time
– A party confirms after both it commits and its peer commits
– A party accepts authentication after a peer confirms
– The protocol successfully terminates after both parties confirm

Assuming:
– H() is a secure PRF
– f(v) is a deterministic mapping of string v to an element in G

Given:
– group G = {generator g, prime p, order q [, a, b]}
– a password chosen at random from a pool

Alice and Bob first generate a password-derived element in G:
 PE = f(password)

• Commit phase
– Exchange scalars and elements

– Generate shared secret

Alice Bob

rnd-a, msk-a <--- random() rnd-b, msk-b <--- random()

scalar-a = (rnd-a + msk-a) mod q scalar-b = (rnd-b + msk-b) mod q

element-a = PE –msk-a element-b = PE –msk-b

(PE scalar-b * element-b) rnd-a mod p = ss = (PE scalar-a * element-a) rnd-b mod p

• Confirm phase
– Generate master key, key confirmation key

– Exchange confirm messages

Alice Bob

KCK | MK = KDF(ss, “some cruft”, (scalar-a + scalar-b) mod q)

confirm-a = H(KCK, scalar-a | scalar-b |
 element-a | element-b)

confirm-b = H(KCK, scalar-b | scalar-a |
 element-b | element-a)

If confirms are verified, exchange succeeds (use MK), else it fails

• Specified in many protocols

– IEEE 802.11-2012 for authentication between
wireless devices (client and AP, or nodes in mesh
and ad hoc networks), SAE

– EAP, RFC 5931

– IKE, draft-harkins-ipsecme-spsk-auth

– TLS, draft-harkins-tls-pwd

• Is this scheme secure?

– Is the probability that an adversary can break the
protocol less than the probability of the adversary
guessing the password outright?

– Does the adversarial advantage grow through
interaction and not through computation?

– Does any information (except the knowledge that
a single guess is correct or incorrect) leak as a
result of running the protocol?

• CDH problem:
– given (ga, gb, g)
– produce gab

• dragonfly algorithm:
– given (ra+ma, PWE-ma, rb+mb, PWE-mb, PWE)
– produce PWEra*rb

• Reduction:
– generate random r1, r2
– Give attacker (r1, ga, r2, gb, g) to produce g(r1+a)*(r2+b)

– But g(r1+a)*(r2+b) / ((ga)r2 * (gb)r1 * gr1*r2) = gab !

• Conclusion:
– Successful attack against dragonfly would solve CDH

problem, which is computationally infeasible

Secure Against Passive Attack

Secure Against Active Attack?
• “doesn't seem likely that the protocol can be proven

secure”– Jonathan Katz

• Random oracle model
– assume no key confirmation step in dragonfly, just scalar

and element exchange

– adversary performs MitM, adding 1 to one side’s scalar

– adversary issues “reveal” query to obtain secrets of both
sides

– off-line dictionary attack is now possible

• This is too contrived to worry about as a real attack
against dragonfly but it is a problem with a formal
proof of security (at least in Random Oracle model)

• Can this protocol be proven secure? Help.

