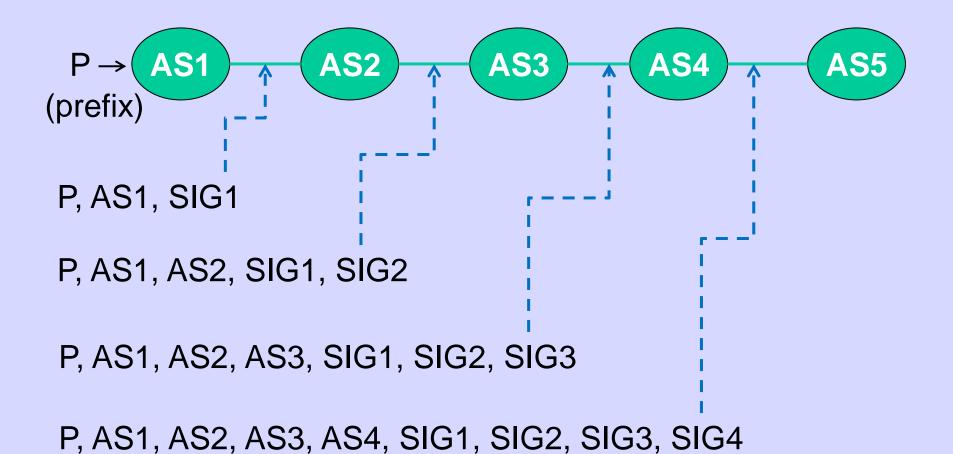
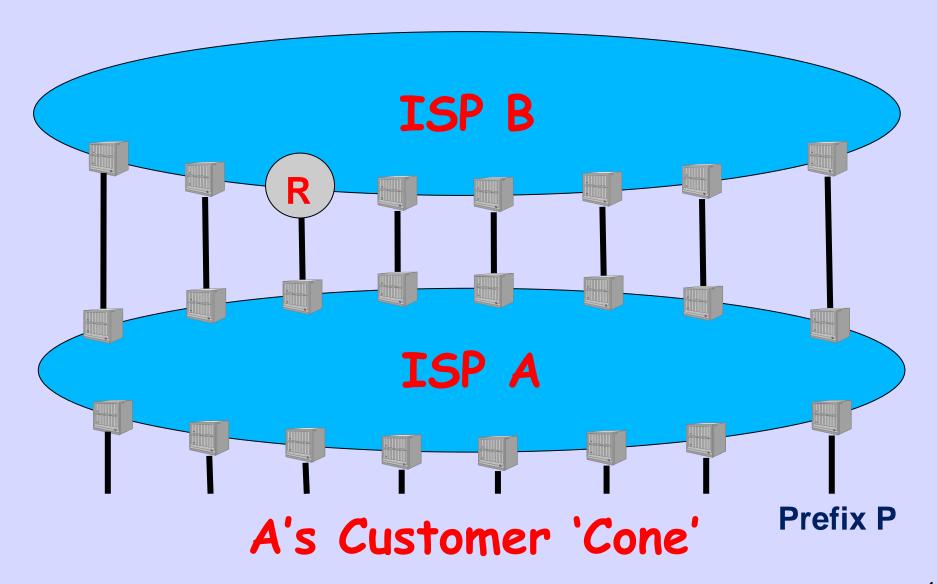
Estimating CPU Cost of BGPSEC on a Router

IETF 82 SIDR WG Meeting Paris


March 2012

Kotikalapudi Sriram <ksriram@nist.gov> Randy Bush <randy@psg.com>


BGPSEC Islands

- RPKI-Based Origin Validation can be deployed by randomly scattered ISPs
- · Each gets the benefit of origin validation
- BGPSEC depends on your neighbor signing
- It will deploy as islands which eventually interconnect

BGPSEC - Conceptually

But Reality is This

Number of Paths

- One ISP router, R, has many paths for prefix P
- All but one are from iBGP peers
- BGPSEC spec says R does not validate paths received from iBGP peers
- I.e., R has to validate only one path for each P from peer A

26 BGPSEC Crypto Cost

Some Largish ISPs Cones

```
Very Large Global
1 1353 --- ISP's Own Pfx
2 21586 --- BGP Cust Pfx
3 6820 --- Cust's Cust Pfx
4 1627 --- ...
5 942
6 45
7 14
8 6
```

```
Large Global
1 443
2 8197
3 8052
4 2715
5 387
6 37
7 48
8 157
9 2
```

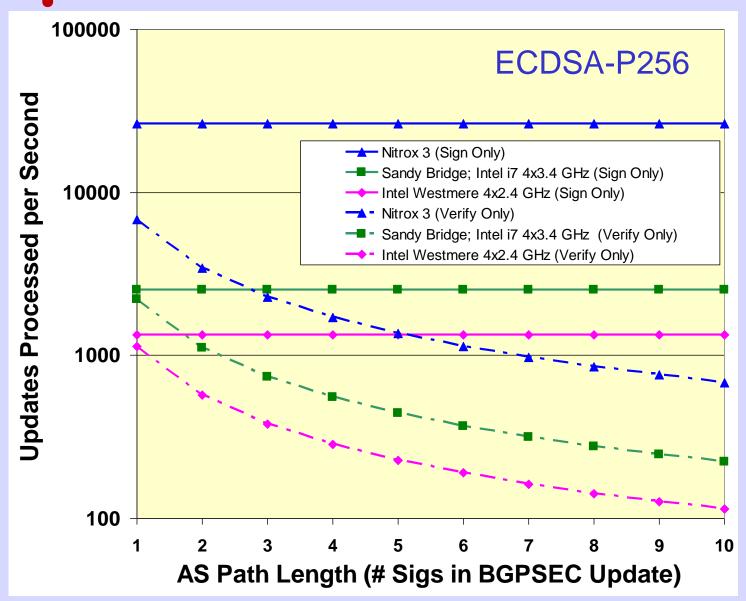
Asian Regional
1 152
2 791
3 120
4 35
5 3
pfxs
path length at seen next upstream ISP

```
Very Large Global
1 620
2 16028
3 9434
4 2922
5 435
6 46
7 15
8 27
9 1
```

Yes, there are rather long tails

Yes, we removed prepending

Cost to Sign/Validate Using One Core

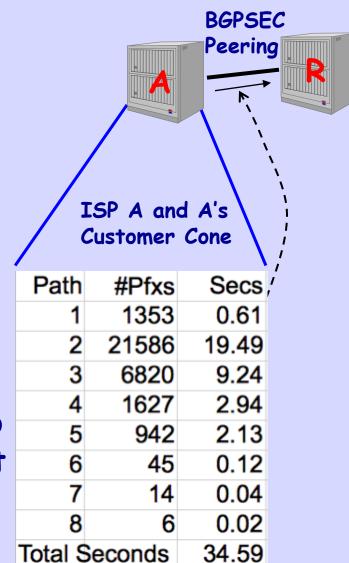

	Operations per second									
				amd64, Sandy						
			/	Bridge; 2011						
		amd64; Westmere		Intel i7-	N	TROX PX PCI-	NITROX III PCI-			
	Intel Core 2 Duo,	(206c2); 2010 Intel	Ц	2600K;	Ex	press CN1620 -	Express CNN3570-			
	64-bit, 3 GHz,	Xeon E5620; 4 x		3400MHz;	P	Cle Look-aside	PCIe Look-aside			
	8GB, Linux 5.7	2400MHz		•	Pr	ocessor	Processor			
ECDSA-P256 Verify	890	1139	V	2215	$\sqrt{}$	854	6832			
ECDSA-P256 Sign	1100	1335		2530		3293	26344			

 Source: eBACS: ECRYPT Benchmarking of Cryptographic Systems

http://bench.cr.yp.to/results-sign.htm

And: Cavium, Inc. (private communication)

Updates Per Second



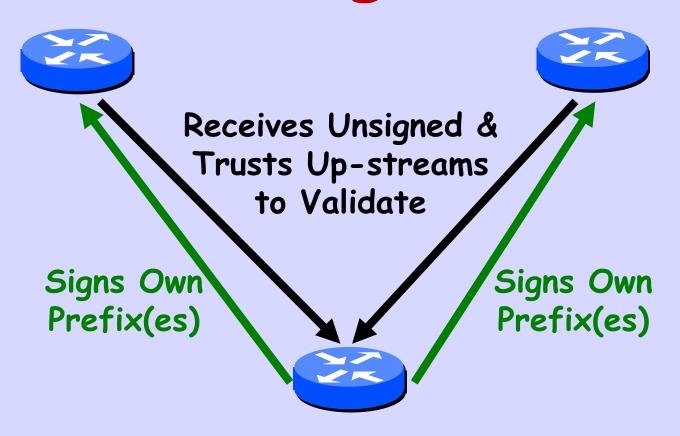
8

Validation Cost Model

BGPSEC

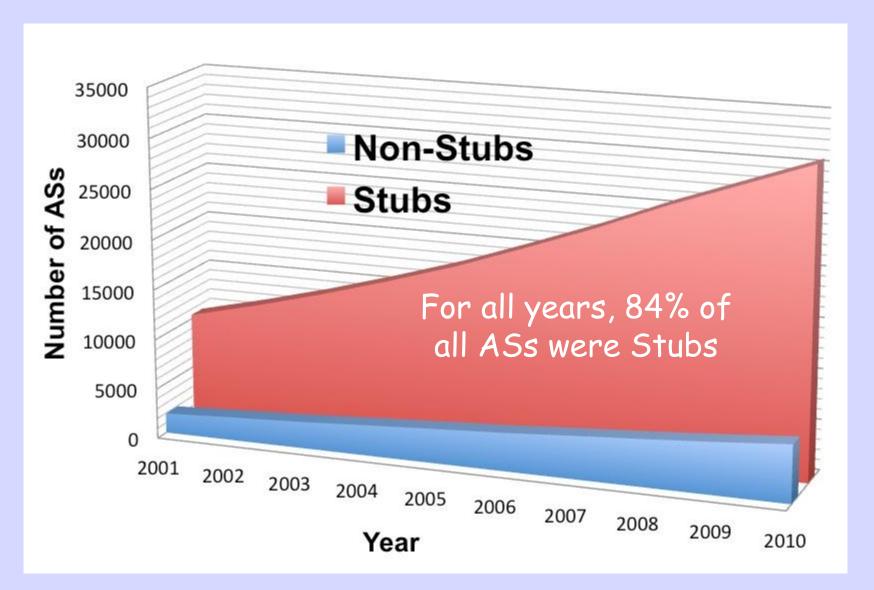
Peering

ISP C and C's Customer Cone Path #Pfxs Secs 620 0.28 14.47 16028 9434 12.78 5.28 2922 435 0.98 46 15 0.05 27 0.10 9 0.00 Total Seconds 34.06


2.78 on R if 5.28 Session to 0.98 C is Reset

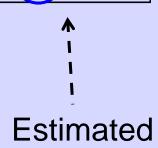
CPU Time on R if Session to A is Reset

Signing Cost


- · You only sign once per update per peer (not dependent on AS-Path length)
- You only sign toward BGPSEC speakers

Need not Sign To Stubs

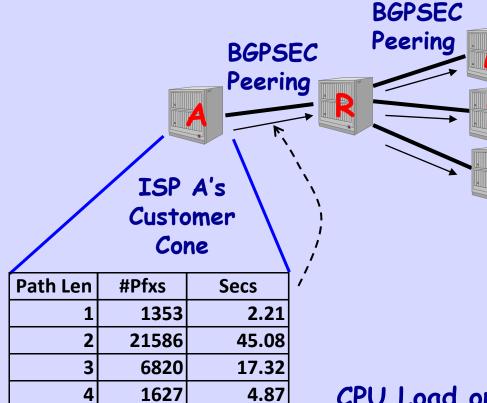
Only Needs to Have Own Private Key, No Other Crypto or RPKI Data No Hardware Upgrade!!


Stub ASs vs. Transit

Data* on Number of <u>Peers per Router</u> and Number of <u>Customers per Router</u> for Large ISPs

						BGP Non-Stub		
	Total BGP)	Transit	BGP	Customers		
ISP	Peers			(Full Table)	Customers	(16%)		
W	29			TBD	95	15		
Χ		3		TBD	20		3	
Υ		6		TBD	12		2	
Z		8		TBD	16		3	

- Only non-stub customers are bi-directional BGPSEC
- 84% of customer ASes are stubs; 16% non-stub
- Router does not sign updates to stub customers



^{*} Source: Data collected by Randy Bush

Signing CPU Cost

- Except for W, it comes to 2-3 BGPSEC customers per aggregation router
- Say 80K routes (one fifth of current Internet) in the BGPSEC island
- Signed at 2530 sigs/sec
- If peering session with a BGPSEC customer resets, Router R needs 80,000/2530 = 32 seconds to repopulate customer's BGPSEC table

CPU for Validation and Signing

3.24

0.18

0.06

0.03

73

942

45

14

Total (seconds)

- · R peers with 3 BGPSEC peers
- · R's other peers are not BGPSEC aware

CPU Load on R, including Validation & Signing, if Session to A is Reset.

Summary

- CPU cost estimated for Intel Sandy Bridge
 i7 using only a <u>Single-core</u> CPU at 3.4 GHz
- The CPU cost numbers for convergence after a peering session reset look very reasonable for BGPSEC island models

16