The Past, Present, and Future of Software Defined Networking

Nick Feamster
University of Maryland
feamster@cs.umd.edu

Steve Woodrow, Srikanth Sundaresan, Hyojoon Kim, Russ Clark
Georgia Tech
Andreas Voellmy
Yale University

http://projectbismark.net/
What if we could change the network as easily as applications?

TCP/IP Header in Lego Format.
Now, We Can: Software-Defined Networking

- **Before:** Network devices closed, proprietary

- **Now:** A single software program can control the behavior of entire networks.
Software-Defined Networking

• Distributed configuration is a bad idea
• **Instead:** *Control* the network from a logically centralized system

SDN Forwarding Abstraction

Control Program A
Control Program B

Network OS

Packet Forwarding

Flow Table(s)

Packet Forwarding

“If header = p, send to port 4”
“If header = q, overwrite header with r, add header s, and send to ports 5,6”
“If header = ?, send to me”
OpenFlow 1.0 Flow Table Entry

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Packet + byte counters</td>
</tr>
</tbody>
</table>

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

Switch Port | MAC src | MAC dst | Eth type | VLAN ID | IP Src | IP Dst | IP Prot | TCP sport | TCP dport |
+ mask
Software Defined Network Management

- Software defined networking (SDN) makes it easier for network operators to evolve network capabilities.

- Can SDN also help network operators manage their networks, once they are deployed?
 - Home networks
 - Campus/Enterprise networks
Big Problem: Configuration Changes Frequently

• Changes to the network configuration occur daily
 – Errors are also frequent

• Operators must determine
 – What will happen in response to a configuration change
 – Whether the configuration is correct
But, Network Configuration is Really Just Event Processing!

• Rate limit all Bittorrent traffic between the hours of 9 a.m. and 5 p.m.
• Do not use more than 100 GB of my monthly allocation for Netflix traffic
• If a host becomes infected, re-direct it to a captive portal with software patches
• ...

Main Idea: Express network policies as event-based programs.

Extending the Control Model

- OpenFlow only operates on flow properties

- Lithium extends the control model so that actions can be taken on time, history, and user
Two Real-World Deployments

- **Usage control in home networks**
 - Implementation of user controls (e.g., usage cap management, parental controls) in home networks
 - **Today:** Not possible
 - **With SDN:** Intuitive, simple

- **Access control in enterprise networks**
 - Re-implementation of access control on the Georgia Tech campus network
 - **Today:** Complicated, low-level
 - **With SDN:** Simpler, more flexible
Frontier #1: SDN @ Home

• Better monitoring and management of home and access networks

• **Deployment:** 225 Routers in ~30 countries
Vision: Better Home Networks

- **Monitoring and Measurement**
 - ISP performance
 - Wireless characteristics and interference
 - Traffic use inside the home
 - Security
 - Human activity patterns

- **Control (with Software Defined Networking)**
 - Usage cap management (ongoing w/HCI researchers)
 - Traffic prioritization (e.g., ensure file sharing does not clobber critical traffic)
 - Parental controls
Better Visibility & Control

- **Better visibility:** Continuous performance monitoring
 - Network and application-level monitoring

- **Better control:** SDN
 - Control applications with simple programs and interfaces

- **What is the network performance?**

- **How do users use apps and devices?**

- **Can we manage resource allocation?**
Usage Control in Home Networks

• Network management in homes is challenging
• One aspect of management: usage control
 – Usage cap management
 – Parental control
 – Bandwidth management

• Idea: Outsource network management/control
 – Home router runs OpenFlow switch
 – Usage reported to off-site controller
 – Controller adjusts behavior of traffic flows
Control: SDN + Intuitive Interfaces

Real-Time Monitoring and Control

Joint work with Boris de Souza, Bethany Sumner, Marshini Chetty.
Deployment Status

- Over 225 routers deployed in home networks “in the wild”
- Collaboration with Measurement Lab on monitoring network performance from various regions and ISPs.
- Ongoing trials with several ISPs as part of private deployments

- Firmware
 - OpenWrt, with luci web interface
 - IPv6-capable
- Netgear 3800 router
 - Atheros chipset
 - MIPS processor, 16 MB flash, 64 MB RAM
 - Gigabit ethernet
 - 2.4 GHz and 5 GHz radio
Ongoing Extensions

• **More measurements**: Denser deployments (e.g., apartments)

• **Broader scope**: More measurements (e.g., integration with Tor’s OONI project)

• **Sensor fusion**: Tighter integration with other in-home, *in situ* sensing capabilities (e.g., phones)

• **Open programming interface**: Enable other researchers to perform measurements
Frontier #2: Policy Language

• Network policies
 – Are dynamic
 – Depend on temporal conditions defined in terms of external events

• Need a way to configure these policies without resorting to general-purpose programming of a network controller

• Intuitive user interfaces can ultimately be built on top of this language
Language Design Goals

• **Declarative Reactivity**: Describing when events happen, what changes they trigger, and how permissions change over time.

• **Expressive and Compositional Operators**: Building reactive permissions out of smaller reactive components.

• **Well-defined Semantics**: Simple semantics, simplifying policy specification.

• **Error Checking & Conflict Resolution**: Leveraging well-defined, mathematical semantics.
The Need for Reactive Control

• Simple policies are doable in FML: “Ban the device if usage exceeds 10 GB in the last 5 days”

\[
\text{deny(Us, Hs, As, Ut, Ht, At, Prot, Req) } \leftarrow \text{ over(Hs).}
\]
\[
\text{over(Hs) } \leftarrow \text{ usage(Hs, lastDays(5), amt), amt } > \text{ 10.}
\]

• But, adding **temporal predicates** is difficult!
 – “Remove the ban if usage drops below 10 GB.”
 – “Remove the ban when an administrator resets.”

• Each condition requires a new predicate.

\[
\text{over(Hs) } \leftarrow \text{ usageOnceExceeded(Hs, lastDays(5), 10).}
\]
Controller: signal functions and a flow constraint function

- Receives **input signals** from environment
- Periodically updates a **flow constraint function** that controls the forwarding elements

```
overUnderEvent = proc env → do
    capMap ← capTracker ← env
    usagedb ← usageTracker ← env
    usageChanges ← usageChangesTracker ← env
    let now = calendarTime env
    let over src = monthlyUsage usagedb now > capMap ! src
    condSplit over ← usageChanges
```

```
overSetStream = proc env → do
    (over, under) ← overUnderEvent ← env
    ioSetStream ← (over, under)
```
Frontier #3: Custom Packet Processing

- Augment OpenFlow switches with custom packet processors
- Device abstraction layer to allow programmability of this substrate
 - Single device
 - Network wide
- Applications
 - Big data applications
 - On-the-fly encryption, transcoding, classification
 - Selective deep packet inspection
Summary

• Software Defined Networking can simplify network monitoring and management, but we still need new control models.

• **Lithium**: Event-based network control
 – Deployment in two real-world settings

• Three frontiers
 – SDN at Home
 – Policy languages for SDN
 – Custom Packet Processing for SDN