The Past, Present, and Future of Software Defined Networking

Nick Feamster
University of Maryland
feamster@cs.umd.edu

Steve Woodrow, Srikanth Sundaresan,
Hyojoon Kim, Russ Clark
Georgia Tech
Andreas Voellmy
Yale University

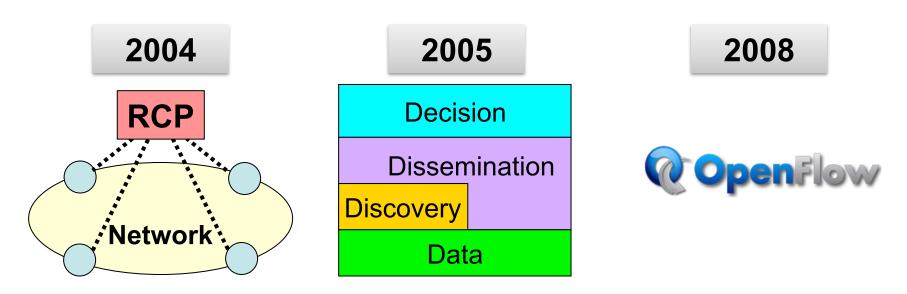
http://projectbismark.net/

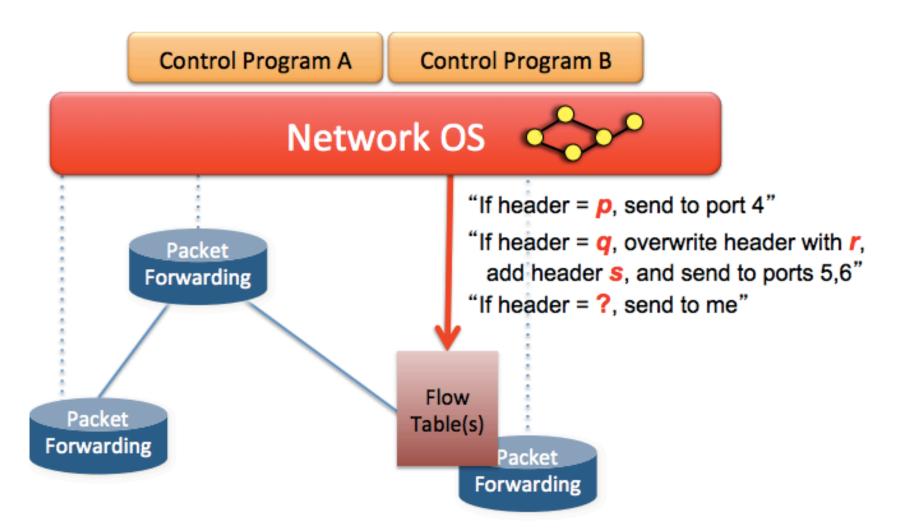
What if we could change the network as easily as applications?

Now, We Can: Software-Defined Networking

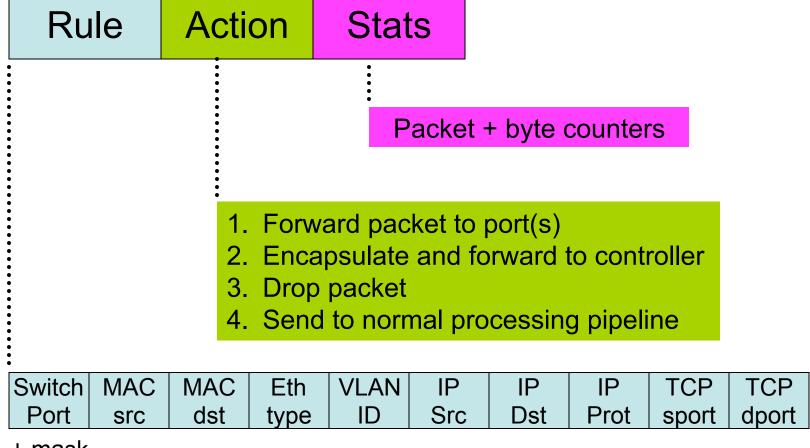
 Before: Network devices closed, proprietary

 Now: A single software program can control the behavior of entire networks.




Software-Defined Networking

- Distributed configuration is a bad idea
- Instead: Control the network from a logically centralized system



Feamster *et al.* The Case for Separating Routing from Routers. *Proc. SIGCOMM FDNA*, 2004 Caesar *et al.* Design and implementation of a Routing Control Platform. *Proc NSDI*, 2005

SDN Forwarding Abstraction

OpenFlow 1.0 Flow Table Entry

+ mask

Software Defined Network *Management*

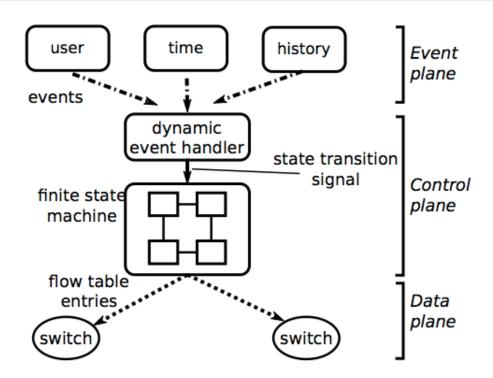
- Software defined networking (SDN) makes it easier for network operators to evolve network capabilities
- Can SDN also help network operators manage their networks, once they are deployed?
 - Home networks
 - Campus/Enterprise networks

Big Problem: Configuration Changes Frequently

- Changes to the network configuration occur daily
 - Errors are also frequent

Georgia Tech	add	del	mod	Total
Routers (16)	31,178	27,064	262,216	326,458
Firewalls (365)	249,595	118,571	171,005	539,171
Switches (716)	216,958	20,185	116,277	353,420
Rtr avg. per device	2,324	1,692	16,389	20,404
FW avg. per device	684	325	469	1,477
Swt avg. per device	303	28	162	494

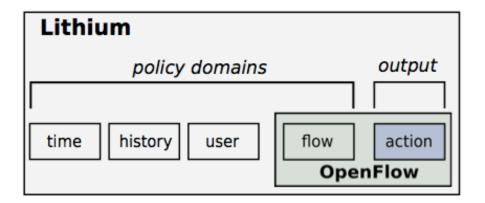
- Operators must determine
 - What will happen in response to a configuration change
 - Whether the configuration is correct

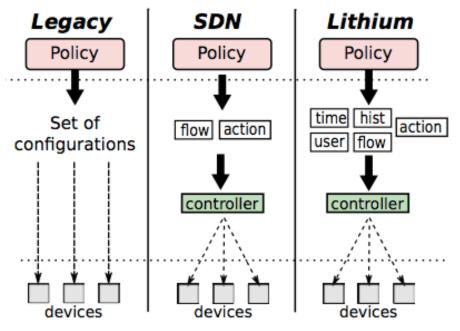

But, Network Configuration is Really Just Event Processing!

- Rate limit all Bittorrent traffic between the hours of 9 a.m. and 5 p.m.
- Do not use more than 100 GB of my monthly allocation for Netflix traffic
- If a host becomes infected, re-direct it to a captive portal with software patches

•

Lithium: Event-Based Network Control


Main Idea: Express network policies as event-based programs.

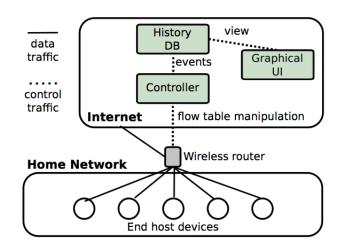


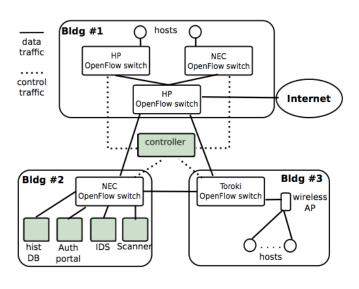
Resonance: Inference-Based Access Control for Enterprise Networks. Nayak, Reimers, Feamster, Clark. ACM SIGCOMM Workshop on Enterprise Networks. August 2009.

Extending the Control Model

- OpenFlow only operates on flow properties
- Lithium extends the control model so that actions can be taken on time, history, and user

Two Real-World Deployments


Usage control in home networks


- Implementation of user controls

 (e.g., usage cap management,
 parental controls) in home networks
- Today: Not possible
- With SDN: Intuitive, simple

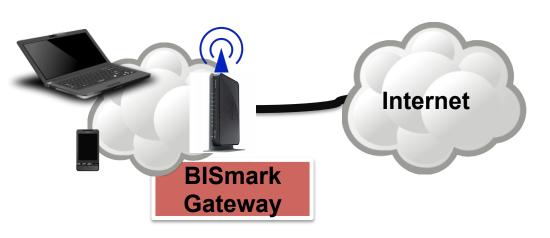
Access control in enterprise networks

- Re-implementation of access control on the Georgia Tech campus network
- Today: Complicated, low-level
- With SDN: Simpler, more flexible

Frontier #1: SDN @ Home

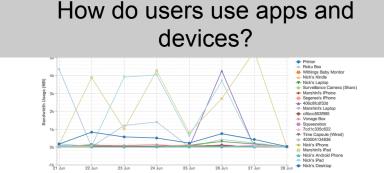
- Better monitoring and management of home and access networks
- Deployment: 225 Routers in ~30 countries

Vision: Better Home Networks


Monitoring and Measurement

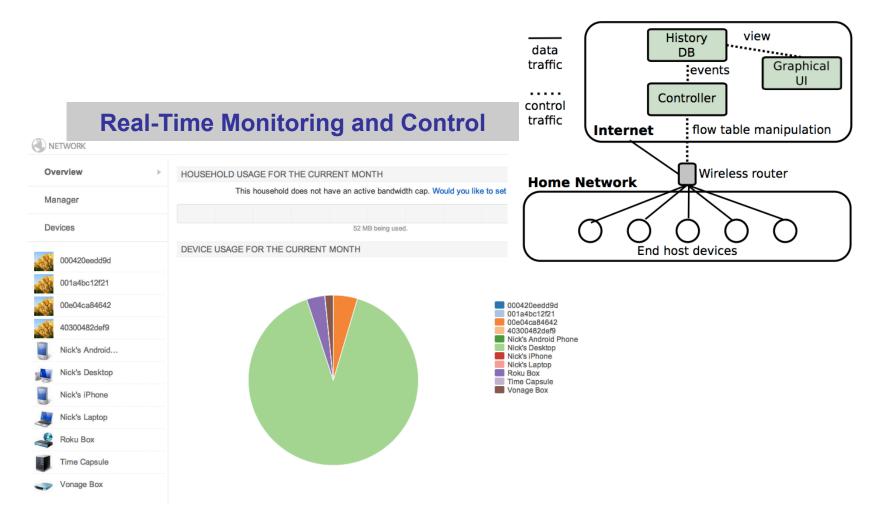
- ISP performance
- Wireless characteristics and interference
- Traffic use inside the home
- Security
- Human activity patterns

Control (with Software Defined Networking)


- Usage cap management (ongoing w/HCI researchers)
- Traffic prioritization (e.g., ensure file sharing does not clobber critical traffic)
- Parental controls

Better Visibility & Control

- Better visibility: Continuous performance monitoring
 - Network and application-level monitoring
- Better control: SDN
 - Control applications with simple programs and interfaces



Can we manage resource

Usage Control in Home Networks

- Network management in homes is challenging
- One aspect of management: usage control
 - Usage cap management
 - Parental control
 - Bandwidth management
- Idea: Outsource network management/control
 - Home router runs OpenFlow switch
 - Usage reported to off-site controller
 - Controller adjusts behavior of traffic flows

Control: SDN + Intuitive Interfaces

Deployment Status

- Over 225 routers deployed in home networks "in the wild"
- Collaboration with Measurement Lab on monitoring network performance from various regions and ISPs.
- Ongoing trials with several ISPs as part of private deployments

Firmware

- OpenWrt,
 with luci web interface
- IPv6-capable
- Netgear 3800 router
 - Atheros chipset
 - MIPS processor, 16 MB flash, 64 MB RAM
 - Gigabit ethernet
 - 2.4 GHz and 5 GHz radio

Ongoing Extensions

- More measurements: Denser deployments (e.g., apartments)
- Broader scope: More measurements (e.g., integration with Tor's OONI project)

- Sensor fusion: Tighter integration with other inhome, in situ sensing capabilities (e.g., phones)
- Open programming interface: Enable other researchers to perform measurements

Frontier #2: Policy Language

- Network policies
 - Are dynamic
 - Depend on temporal conditions defined in terms of external events

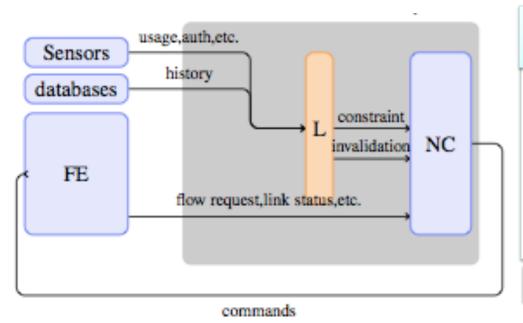
 Need a way to configure these policies without resorting to general-purpose programming of a network controller

 Intuitive user interfaces can ultimately be built on top of this language

Language Design Goals

- Declarative Reactivity: Describing when events happen, what changes they trigger, and how permissions change over time.
- Expressive and Compositional Operators:
 Building reactive permissions out of smaller reactive components.
- Well-defined Semantics: Simple semantics, simplifying policy specification.
- Error Checking & Conflict Resolution: Leveraging well-defined, mathematical semantics.

The Need for Reactive Control


 Simple policies are doable in FML: "Ban the device if usage exceeds 10 GB in the last 5 days"

```
deny(Us, Hs, As, Ut, Ht, At, Prot, Req) <- over(Hs).
over(Hs) <- usage(Hs,lastDays(5),amt), amt > 10.
```

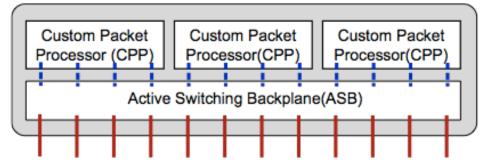
- But, adding temporal predicates is difficult!
 - "Remove the ban if usage drops below 10 GB."
 - "Remove the ban when an administrator resets."
- Each condition requires a new predicate.

```
over (Hs) <- usageOnceExceeded (Hs, lastDays (5), 10).
```

Procera: Programming Reactive, Event-Based Network Control

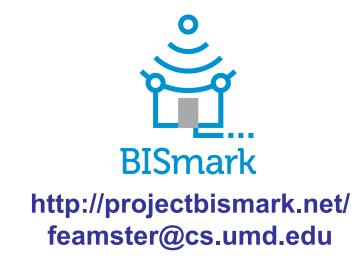
Define a signal function for a device going over (or under) the usage cap:

```
overUnderEvent =
proc\ env 	o do
capMap \leftarrow capTracker 	odeseq env
usagedb \leftarrow usageTracker 	odeseq env
usageChanges \leftarrow usageChangesTracker 	odeseq env
let\ now = calendarTime\ env
let\ over\ src =
monthlyUsage\ usagedb\ now > capMap\ !\ src
condSplit\ over\ 	odesed usageChanges
```


Define the set of devices over the cap:

```
overSetStream = 
proc \ env \rightarrow do
(over, under) \leftarrow overUnderEvent \rightarrow env
toSetStream \rightarrow (over, under)
```

- Controller: signal functions and a flow constraint function
- Receives input signals from environment
- Periodically updates a flow constraint function that controls the forwarding elements


Frontier #3: Custom Packet Processing

- Augment OpenFlow switches with custom packet processors
- Device abstraction layer to allow programmability of this substrate
 - Single device
 - Network wide
- Applications
 - Big data applications
 - On-the fly encryption, transcoding, classification
 - Selective deep packet inspection

Summary

 Software Defined Networking can simplify network monitoring and management, but we still need new control models.

- Lithium: Event-based network control
 - Deployment in two real-world settings
- Three frontiers
 - SDN at Home
 - Policy languages for SDN
 - Custom Packet Processing for SDN