
Laminar TCP
and Related Problems

ICCRG, IETF-84
July 30, 2012

Matt Mathis
mattmathis@google.com

draft-mathis-tcpm-laminar-tcp-01

No NDA or GPL'd content

● This presentation is intended to be safe for all
● No non-standard algorithms

○ Except perhaps TCP Segmentation Offload (TSO)
● Covers status of current work

○ No code details

Current status

● There is a published clean patch against Linux 3.5
○ https://developers.google.com/speed/protocols/tcp-laminar
○ Optimized for (stand alone) clarity
○ No glaring bugs

● Planned additional work
○ Cosmetic cleanups (var names, etc)
○ Reduce the delta footprint
○ Split into multiple pieces

■ Laminar core
■ Probably subdivided into increments

■ Plus one or more addons

https://developers.google.com/speed/protocols/tcp-laminar
https://developers.google.com/speed/protocols/tcp-laminar

Why partition the patch?

● Laminar core is "just" a refactor
○ Does not change properties or performance

● Need to demo new algorithms based on Laminar
○ But not part of the core algorithm

● The tipping point will be when
○ core + (some) addons reach consensus

Possible Laminar Addons

● Restart after idle & cwnd validation (multiple versions?)
○ Laminar versions of existing algorithm(s)
○ At least one paced version
○ Existing Laminar core contains overly conservative cwv

■ To be moved to an addon patch
● Fluid model version of Reno (and cubic?)

○ See the prior ICCRG slides (below)
● Weighted Relentless

○ See May 2009 ICCRG
● Restate cubic hystart

○ Moved from CC to transmission scheduling

Important point: Laminar proper is performance neutral.
Additions are required to justify the effort.

Your input

● Play with the code
○ I am happy to accept suggestions & feedback

● Update your favorite CC module
○ I can't do the ones that I don't use

● If Laminar effects your (past or present) doc
○ Are there conflicts or other problems?
○ Does it make things easier/better?

Planned new mailing list

● laminar@ietf.org

This list is for discussing Laminar TCP and how to proceed with
it, through new or existing working groups in the IETF and/or
IRTF. It is also intended for technical discussion of Laminar
and refactoring of TCP algorithms in general.

Laminar: Two separate subsystems

● Pure congestion control
○ New state variable: CCwin
○ Target quantity of data to be sent during each RTT
○ Carries state between successive RTTs
○ Not concerned with detailed timing, bursts etc

● Transmission scheduling
○ Primary state is implicit, recomputed on every ACK
○ Controls exactly when to (re)transmit data
○ Tries to follow CCwin
○ Little or no explicit long term state
○ Includes slowstart, burst suppression, (future) pacing
○ Variables: pipe (3517), total_pipe and DeliveredData

Default (Reno) Congestion Control

On startup:
 CCwin = MAX_WIN

On ACK if not application limited:
 CCwin += MSS*MSS/CCwin // in Bytes

On congestion:
 if CCwin == MAX_WIN
 CCwin = total_pipe/2 // Fraction depends on delayed ACK and ABC
 CCwin = CCwin/2

Except on first loss, CCwin does not depend on pipe!

Default transmission scheduling

sndcnt = DeliveredData // Default is constant window

if total_pipe > CCwin:
 // Proportional Rate Reduction
 sndcnt = (PRR calculation)

if total_pipe < CCwin:
 // Implicit slowstart
 sndcnt = DeliveredData+MIN(DeliveredData, ABClimit)

SndBank += sndcnt
while (SndBank && TSO_ok())
 SndBank -= transmitData()

Fluid model Congestion Control
(Reno done better, CCwin in fractional bytes)

On every ACK: // Including during recovery
 CCwin += MAX(DeliveredData, ABClimit)*MSS/CCwin

On retransmission:
 oCCwin = CCwin
 if (CCwin == MAX_WIN):
 CCwin = initialCCestimate(total_pipe)
 CCwin = CCwin/2
 undoDelta = oCCwin - CCwin

Undo:
 CCwin = MIN(CCwin+undoDelta, MAX_WIN)
 undoDelta = 0

Fluid model properties

● Insensitive to reordering and packet boundaries
○ Total increment based on total forward progress in bytes

● Insensitive to spurious retransmissions
○ Undo and AI are both linear and order insensitive

● Closer agreement between the code and formal models
○ No "boundary condition" for data during recovery
○ CCwin rises during recovery while PRR reduces pipe

My bet: many things we think we know about congestion
control are not totally right.

Transmission scheduling opportunities

● In existing implementations, TS is degenerate
○ Override long term CC state by futzing with cwnd
○ Sometimes put long term state in ssthresh
○ No "space" for new features

● Under Laminar hybrid self clock and paced is natural
○ Can pace following application stalls, etc
○ Compute rate from CCwin, total_pipe and RTT

● Huge "green field" of unexplored research opportunities
○ Many new problems seeking new solutions

Conclusion

● Laminar has the potential to change many things
● Entirely separate long and short time scales
● Entirely distinct algorithms for each
● Free both from code complexity and interactions
● Much opportunity for new research
● Much opportunity to re-evaluate old experiment

