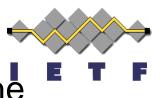

ICN Scalability and Deployability


Akbar Rahman

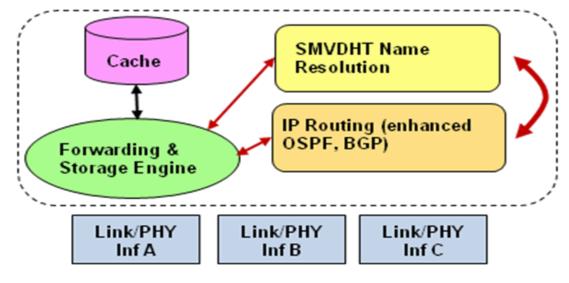
IETF 84, July 29 - Aug. 3 2012

- Describe a new scalable name resolution and Distributed Hash Table (DHT) based routing approach for Information-Centric Networking (ICN)
 - Get technical feedback from ICNRG WG experts
 - Consider these techniques for potential inclusion in ICNRG WG Survey deliverable

Our Approach

A name aggregation scheme: the prefix + the digest of suffixes

- *Digest* is generated by Bloom filters
- Reduce the size and update overhead of name resolution tables
- Mitigate the suffix hole problem in traditional prefix-based aggregation.
- Also propose to use *type-length-value* (TLV) coding for names
- Scalable Multi-level Virtual Distributed Hash Table (SMVDHT): A scalable name resolution and routing framework
 - Multi-level virtual DHTs with name aggregation
 - Constructed by exploiting the underlying intra- and inter-domain IP routing protocols
 - Multi-level DHT-based name resolution is an integrated part of routing and forwarding.
 - Improve scalability and deployability


Proposed Aggregation Scheme (1)

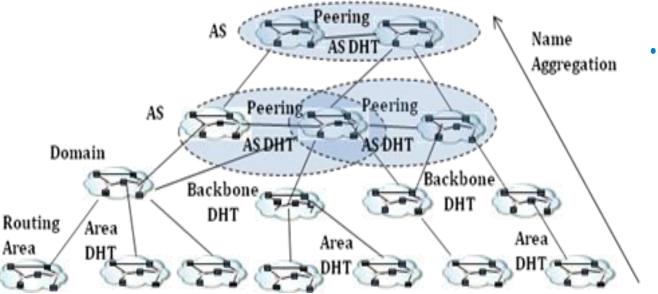
- Prefix+Digest Aggregation: publish the prefix and the digest of suffixes [3], [4]
 - Bloom filters are used to generate the digest from the suffixes of the aggregated object names.
- A Content Router (CR) announces
 - "the content objects with this prefix and digest value of the suffixes can be reached via me."
 - more accurate information
 - other CRs only need to maintain one routing state per announced prefix
- Can be used for flat and hierarchical names

Proposed Aggregation Scheme(2)

- Flat names: N objects, P:L; (i=1, 2, ...N)
 - ⇒ Advertise a summary name (sOID), **P:digest(L)**, digest(L) = Bloom-Filter{L₁, ...L_N}.
- Hierarchical names: N objects with /example.com/movies/titles/segmentations
 - /example.com/movies/digest(titles/segmentations)
 - /example.com/digest(categories/titles/segmentations)
- Control aggregation degree based on the content object popularity or the distance to the content location
 - Balance between needed resources and routing information compression.
 - Adjust the prefix size, i.e. the number of non-aggregated elements or
 - Control # of aggregated elements that are added to a digest
- Relieve the suffix hole problem
 - while reducing the size and update overhead of name routing tables

SMVDHT (1)

SMVDHT router model



- A CR runs both IP routing and SMVDHT name resolution protocols,
- ICN services co-exist with other IP services such as traditional host-to-host communications.
- A name resolution layer on top of the IP layer

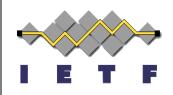
;	persist	ent	tr	ansient
	Payload	OID header	IP Header	

SMVDHT (2)

- Multi-level virtual DHTs mapped to the Internet hierarchy
 - No change to the current Internet hierarchy infrastructure as well as the relationship between enterprise domains and ISPs => simplifies deployment.

 Aggregation based on the content popularity and VDHT level.

- Conventional OSPF and BGP are used for IP routing with certain extensions, e.g. a router can advertise its name resolution capability in its IP routing dissemination.
- A host or a normal IP router can connect to an SMVDHT router as a client.


References

- [1] "A Data-Oriented (and Beyond) Network Architecture," T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker, I. Stoica, ACM SIGCOMM [07.
- [2] "Networking Named Content," V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, R. Braynard, CoNEXT '09.
- [3] "A Multi-Level DHT Routing Framework with Aggregation," H. Liu, X. De Foy, D. Zhang, ACM SIGCOMM ICN'12.
- [4] "A TLV-Structured Data Naming Scheme for Content-Oriented Networking," H. Liu, D. Zhang, IEEE FutureNet V, June, 2012.
- [5] "Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications," I. Stoica,R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, ACM SIGCOMM 2001.
- [6] "Canon in G Major: Designing DHTs with Hierarchical Structure," P. Ganesan, K. Gummadi, H. Garcia-Molina, IEEE ICDCS, March 2004.
- [7] <u>http://www.fp7-pursuit.eu/PursuitWeb/</u>.
- [8] <u>http://www.psirp.org/</u>
- [9] <u>http://www.netinf.org/home/home/</u>.

[10] Scalable and Adaptive Internet Solutions (SAIL). http://www.sail-project.eu/.

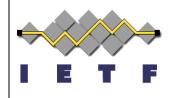
Backup Slides

Introduction

- Information-Centric Networking (ICN)
 - decouples identity from location at the networking level
 - retrieves an information object by its name (identifier), not by its storage location (IP address)
- Address limitations and inefficiency of IP networks
 - Content distribution, Mobility, Multi-homing, etc.
- •Challenges:

Scalability

- At least handle 10¹² objects even based on the current web size
- Increase by several orders of magnitudes considering sensor data, vehicular, Internet of things
- Dynamic locations due to caching


Deployability

- IP networks would not go away
- ICN => next-gen CDN?
 - Built-in storage and computing power in network elements
 - No need for dedicated cache servers, proxies

Naming

- Naming scheme is critical in ICN
 - Used to identify, discover and retrieve content
 - Affect routing, scalability, and content security
- A content object name or ID (OID)
 - Uniqueness
 - globally unique to identify an object
 - Persistence
 - Independent of location and administrative domain
 - remain valid as long as the underlying object itself is available and not changed.
 - Trustworthiness
 - Secure the content rather than the communication path
 - End users and network elements should be able to authenticate the content
 - Binding between the user-friendly name and its corresponding ICN OID, and binding between the OID and content data
 - Scalability
 - Certain name aggregation

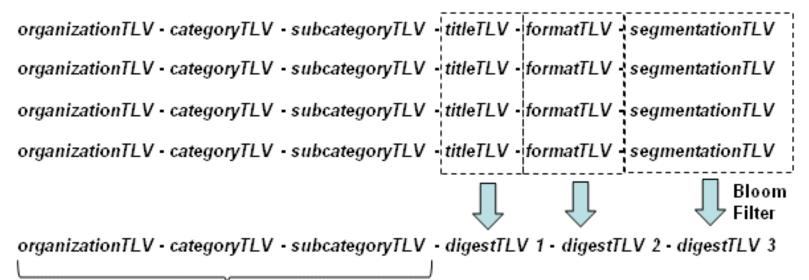
Existing Naming Schemes

Flat OID [1]

- P:L
 - P = hash of a public key of content owner/naming authority
 - L= a flat label or hash of the content data
- Self-certifying
- Difficult to aggregate
- Need an external mechanism to map between user-friendly name and flat OID.
- Hierarchical OID [2]
 - Similar to binary encoded URL
 - /example.com/movies/title/format/segmentation
 - mapping between user-friendly name and corresponding ICN OID
 - But need mapping between OID and data (public key to authenticate data)
 - Aggregation to improve scalability

Prefix-Based Aggregation

- Hierarchical names with prefix-based aggregation (OCN) T
 [2]
 - aggregate routing entries for the hierarchical OIDs with a common prefix
 - /example.com/movies/..../....
 - If all the content objects with a prefix of "/example.com/movies" stored in a node,
 - a single route announcement
 - maintain a single routing state for these objects in content routers
- Some issues with prefix-based aggregation
 - A caching node or content router (CR) may not have all the content objects with a given prefix.
 - If the prefix-based aggregation is used to reduce routing states and update overhead, a lot of information will be lost. Router has to advertise:
 - "some of the content objects with this prefix (/example.com/movies) may be reached via me."
 - ⇒ <u>suffix hole</u>
 - ⇒ uncertainty in locating a particular content object and reduce routing efficiency
 - How to aggregate non-structured flat names?


TLV-Structured Naming Scheme

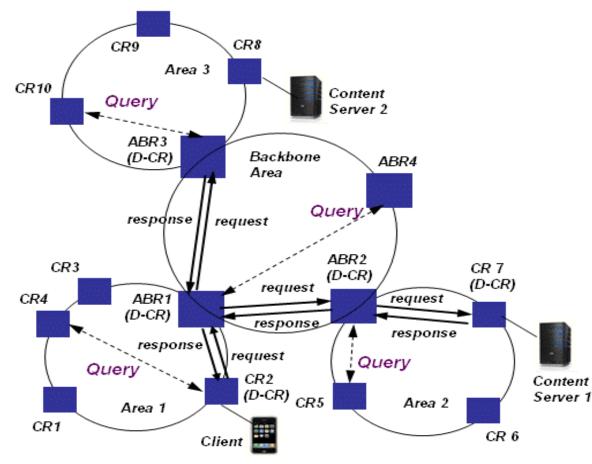
- Type-Length-Value (TLV) Encoded OID [4]
 - consist of a set of variable-size information elements (IE), each IE encoded as a TLV
 - E.g. organizationTLV-categoryTLV-titleTLVsegmentationTLV
 - The network imposes no restrictions to the OID assignment except the TLV structure
 - CRs do not have to know the meaning of types and values except certain "well-known" types.
 - use the length field to parse the TLV elements and treats the whole element as a binary number in publishing and routing
- Why:
 - Flexibility: Hierarchical or peer relationships
 - Can define "well-known" types, e.g. digest TLVs, signature TLVs
 - Extensibility: sub-TLVs
 - URLs or DNS names have their traditional semantics, somehow related to the location, e.g. example.com/video/WidgetA.mpg
 - the name becomes misleading if the administrative domain or location of the object is changed.

Aggregation

- To address suffix hole problem, use prefix TLVs + digest TLVs
 - apply Bloom filters on each column of aggregated TLV elements to generate digest elements.
 - a routing advertisement can express more accurate information

PrefixTLVs

Туре	LCHAU	# of elements summarized	Digest
------	-------	-----------------------------	--------

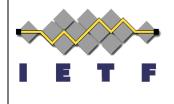

Integration of Name Resolution and IP Routing

- Content Publishing Techniques: flooding or DHT
 - Each has its pros and cons.
- ICN is different from P2P
 - Infrastructure nodes relatively stable, but content locations change frequently due to cache replacements
- IP routing (flooding) provides infrastructure topology
 - help design more scalable and efficient name resolution mechanisms and improve deployability
- Build scalable multi-level virtual one-hop DHTs (SMVDHT) using IP routing [3]
 - Simplified network management and more efficient than conventional hierarchical DHTs such as Chord [5] and Canon [6]
 - No need for DHT bootstrapping and maintenance (IP does the job)
 - Corresponds to the Internet hierarchy and optimize forwarding path
- Name resolution is an integral part of routing and forwarding

Name Resolution and Routing Procedures

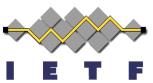
 Integrated name resolution and routing protocol: delegated CRE
 perform local look-up and forwarding decision in hop-by-hoption in hop-by-hop-b

- forwarded to the best or closest host(s) of the requested object by a set of delegated CRs.
- A response carrying the content data or an instruction to establish the content retrieval session is forwarded back to the requester along the same shortest path as the request travels
 - en-route caching can be performed by intermediate CRs.


Summary

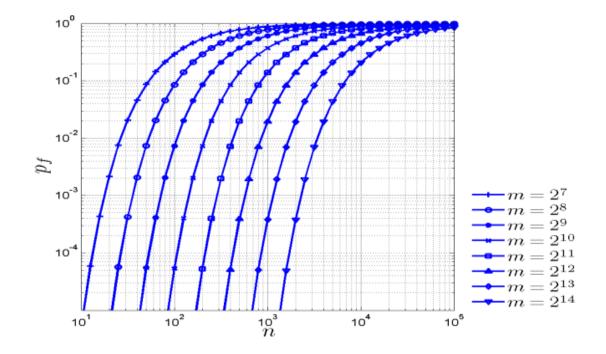
- Scalability and deployability are critical
- Need to work/integarte with IP, not to replace IP
- Better aggregation:
 - prefix + digest of suffix
- SMVDHT:
 - exploit IP routing for efficient and scalable name resolution

Some More Details



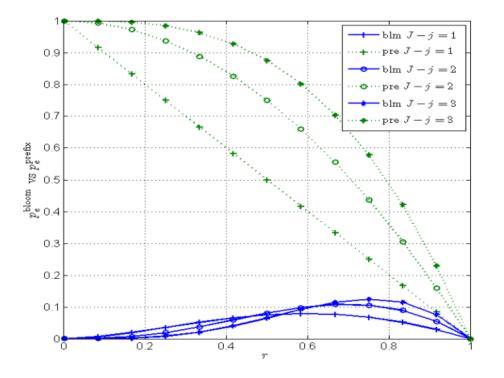
CR Forwarding Process (1)

- To resolve a request to a publishing node, there should be an entry match between the requested OID and a published sOID,
 - the corresponding prefix should be exactly the same
 - the digest in the sOID should give a positive match to indicate that the corresponding suffix element in the requested OID is likely to be present.
- With Bloom filters, false positives are possible, but false negatives are not.
 - the error probability can be controlled
 - designing appropriate filters
 - limiting the number of elements that are added to a digest.


CR Forwarding Process (2)

- Given a filter, a publishing CR can flexibly control the aggregation degree based on the popularity of the content objects or the distance to the content location
 - e.g. no aggregation performed for the content objects residing in the local network domain.
 - a domain gateway router publishes the summary OIDs of its content objects to outside domains.
 - the number of suffix elements added to a digest can be limited to control the error probability.
 - When the number of elements exceeds the limit, the elements are divided into groups.
 - Each group generates a digest.
- Balance between the network resources needed for maintaining routing states and the false positive probability.
- Mitigate the suffix-hole problem while achieving good routing scalability
- One learns from the sOID that the requests for the content objects with this prefix and digest may be served by this domain.

Bloom Filter Performance


 False positive probability p_f as a function of the number of aggregated elements n in the digest and the filter size m, assuming an optimal value of k is used.

• Design Bloom filters to meet the requirements

Bloom-Filter Aggregation vs. Prefix-Based Aggregation

Routing resolution error probabilities of Bloom-filter and prefix-based aggregations

Bloom filter aggregation greatly outperforms the • conventional prefix-based aggregation

- n = # of elements added to a digest
- u = total # of potential elements
- r = n/u