
REBOOK:

a Network Resource

Booking Algorithm
draft-montessoro-rebook-00

Pier Luca Montessoro, Riccardo Bernardini

montessoro@uniud.it, riccardo.bernardini@uniud.it

Multimedia Networking and Applications lab

DIEGM - University of Udine, Italy

ICNRG Meeting @ IETF-84, August 1st, 2012

The research group

 (a multidisciplinary approach)

 Pier Luca Montessoro, coordinator, full professor in
computer science (networking and software
development)

 Franco Blanchini, full professor in controls (distributed
control functions)

 Mirko Loghi, assistant professor in computer science
(networking, hardware and software development)

 Riccardo Bernardini, assistant professor in
telecommunications (multimedia encoding and
networking)

 Daniele Casagrande, assistant professor in controls
(distributed control functions)

 Stefan Wieser, research assistant in computer science
(networking and software development)

http://users.dimi.uniud.it/~franco.blanchini/franco.jpg

Our possible contribution to ICN

 ICN can benefit from congestion- and flow-controlled
transport of objects from a given location to the
interested receiver

 REBOOK provides deterministic, dynamic and scalable
resource reservation
 maximum delivery time for generic NDOs

 adequate transport performance for multimedia streaming
services

 REBOOK can be useful for some instances of ICN

 (We are looking for feedbacks!)

REBOOK

 IS NOT another reservation protocol

 IS a distributed algorithm for efficient status information
handling within intermediate nodes

 provides an open framework for congestion
avoidance/control, fast packet forwarding and other
features

 can be applied to existing or new protocols

 provides interaction and feedbacks between the network
and the hosts/applications

 provides circuit performance for packet forwarding, for
free

 high degree of flexibility (IPv4, IPv6, multicast)

REBOOK and ICN

 REBOOK: new paradigm

 routers, senders and receivers cooperate and handle per-flow state
information

 ICN: new architecture

 routers, senders and receivers are merged

 cooperation becomes natural

 they can trust each other

 REBOOK can be useful to improve the transport services for ICN based
on packet switching

 Deployment

 REBOOK is designed for incremental deployment

 it works even along partially rebook-aware routes

 we guess ICN represents an ideal environment for its implementation
and deployment

REBOOK and ICN

ICN

IP forwarding infrastructure

name resolution, caching, …

routing, forwarding, …

REBOOK

object

The Question

 In practical applications, is it still true with

today’s technology?

“Routers cannot keep state information

for each connection (flow) traversing a

node. It does not scale”.

A tale of space and time…

Available memory

Computation time

Space

In 4 GB of memory:

 ~86 millions of flow information

@ 50 bytes per flow

86 millions of flows means:

 ~688 Gbps @ 8 kbps per flow

 ~33 Tbps @ 384 kbps per flow

Not an issue for the control plane

of ICN nodes routing modules

Time: here comes REBOOK

The enabling algorithm:
DLDS (Distributed Linked Data Structure)

During setup

 store resource reservation information in routers

 AND

 keep track of pointers (memory addresses or indexes
in tables) along the path

Afterwards

 use the pointers to access status information without
searching

Routing

Cache

ICN

Application

Resource reservation

and pointers collection

N1 (sender)

N4 (receiver)

Resource reservation message

4

Resource reservation message

4 2

Resource reservation ACK message

4 2

Resource

Reservation Table

1

2

3

4

5

6

2 Mb/s

req=2, res=2

req=2, res=1

Resource

Reservation Table

1

2

3

4

5

6

1 Mb/s

req=2, res=1

Routing

Cache

ICN Routing

Cache

ICN

Application

Routing

Cache

ICN

N2

N3

Routing

Cache

ICN

Application

Fast packet forwarding

Routing

Cache

ICN Routing

Cache

ICN

Application

Routing

Cache

ICN
N1 (sender)

N4 (receiver)

N2

N3

Resource

Reservation Table

Reservation

Info

Local

Index

Next

Index

Forwarding

Table

Destination Output Port

Data Packet

Rr index IP dest

A few problems

 route changes, disappearing flows, end nodes or
routers faults
 high speed consistency check

 highly efficient, low priority table cleanup process

 need to dynamically change assigned resource
amounts
 partial release

 distributed control function for optimality and fairness

Does

it work?

0

50

100

150

200

250

300

0

2

4

6

8

10

12 T1: route change T2: route change

number of booked flows

per sender node

total packet rate per sender

Rtr1 Rtr2 Rtr3 Rtr4 Rtr5 Rtr6 Rtr7

Snd1

Rcv1

Snd7

Rcv7 Rcv3 Rcv5

Snd3 Snd5

this link is down between T1 and T2

650 650 650 650 650 650 650

10 UDP “flows”, Rmin=15 Rreq=25

Does it work?

(cont’d)

receiver 0 sender 0

receiver 1 sender 1

R0 R2

R1 R3

sender 2 sender 3

receiver 2 receiver 3

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0 0

R
0

0

0.2

0.4

0.6

0.8

1

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0 0

R
1

0

0.2

0.4

0.6

0.8

1

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0 0

R
2

0

0.2

0.4

0.6

0.8

1

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0 0

R
3

0

0.2

0.4

0.6

0.8

1

time

time

time

time

direct access

lookup

direct access

lookup

direct access

lookup

direct access

lookup

optimal and fair!

“… and running code”

 Current prototype

 Extremely lightweight hosting protocol

 Add-on modules for applications and routing engines

 C/C++ static or dynamic link library

 Multi-platform (Linux gcc, Microsoft Visual Studio)

 Under development:

 Embedding in Linux kernel

 Usage of unassigned IP Option Alert flag values

Module

 Router 30 KB

 Sender 20 KB

 Receiver 8 KB

Object code size (gcc compiler, Intel Core 2)

Size

Prototype

handle REBOOK message

get currently available resource

notify available resource increase

notify available resource reduction

send rebook message

ROUTER REBOOK ENGINE

reservation request

reservation upgrade request

reservation removal request

handle rebook message

notify reservation ACK

notify reduction ACK

notify reset

send rebook message

handle rebook message

partial reservation release request

notify reservation event

send rebook message

SENDER REBOOK ENGINE

RECEIVER REBOOK ENGINE

Performance

Activity configuration

setup (incl. res. reserv.) 10,000 flows 200 ns once per flow

setup (incl. res. reserv.) 10,000,000 flows 250 ns once per flow

Keepalive message handling 10,000 flows 100 ns every 5 seconds

Keepalive message handling 10,000,000 flows 190 ns every 5 seconds

RR table entries release 10,000 flows 25 ns per flow

RR table entries release 10,000,000 flows 48 ns per flow

RR table cleanup 10,000,000 entries 100 ms every 15 seconds

Activity configuration

DLDS forwarding table access 1,000,000 routes 10.57 ns per packet

DLDS forwarding table access 100,000,000 routes 10.65 ns per packet

CPU times (DLDS and resource reservation management)

CPU time

CPU time

CPU times (direct access forwarding, including consistency check)

Traffic Overhead (relative to a 10-minutes 384 kb/s multimedia flow)

0.002 %

0.08 %

0.6 %

Keepalive message

Alert option, pointer and hop counter in data packets

Distributed linked data structure setup

CPU times have been

measured on a 1.6 GHz

Intel® Core 2 computer

Deployment

 No interaction with (nor change in) the underlying routing
protocols is required

 Autonomous recovery of errors, faults and route changes

 If information stored in the DLDS becomes obsolete,
packet handling is reverted to best-effort, lookup-driven
forwarding

 Packets are never dropped nor misrouted

 It works even on partially REBOOK/DLDS-unaware paths

 It works across multiple Autonomous Systems

 It does not require any agreement between network
managers

 It can be implemented in an extremely lightweight protocol

References

 Pier Luca Montessoro, Daniele De Caneva. "REBOOK: a deterministic, robust and scalable
resource booking algorithm," DOI 10.1007/s10922-010-9167-8, Journal of Network and
Systems Management (Springer), Pp. 1-29 ISSN: 1064-7570 (Print) 1573-7705 (Online)

 Pier Luca Montessoro, "Distributed Linked Data Structures for Efficient Access to Information
within Routers", Proceedings of IEEE 2010 International Conference on Ultra Modern
Telecommunications, 18-20 October 2010, Moscow (Russia), ISBN 978-1-4244-7286-4

 Pier Luca Montessoro, “Efficient Management and Packets Forwarding for Multimedia
Flows,” Journal of Network and Systems Management (Springer), 2012, DOI:
10.1007/s10922-012-9232-6

 Franco Blanchini, Daniele Casagrande, Pier Luca Montessoro, “A novel algorithm for
dynamic admission control of elastic flows,” Proc. of 50th FITCE congress, Palermo, Italy,
August 31th – September 3rd, 2011, pp.110-115, ISBN: 978-1-4577-1208-1, DOI:
10.1109/FITCE.2011.6133421

 Pier Luca Montessoro, Stefan Wieser, Laszlo Böszörmenyi, “An Efficient and Scalable Data-
Structure for Resource Reservation and Fast Packet Forwarding in Large Scale Multimedia
Overlay Networks,” IEEE CQR 2012, 15-17 May 2012, San Diego, CA

 Pier Luca Montessoro, international patent application on DLDS, UD2010A000178
(29/9/2011), PCT/IB2011/054281 (29/9/2011)

In the articles…

 Distributed control function for fairness and

optimality

 Deployment

 Security

 Fast packet forwarding

 Implementation details

Conclusion

 Some instances of ICN can use REBOOK
 for congestion- and flow-controlled transport of

objects from a given location to the interested
receiver

 to provide fast packet forwarding in software-based
routers or inexpensive hardware implementation

 Why ICN? Why REBOOK?
 new architecture that overcome the rigid separation

(and mistrust) between hosts/applications and the
network

Thank you!

Other scenarios

Outside the cloud:

Overlay Network

Other scenarios (cont’d)

Inside the cloud:

REBOOK/DLDS-

aware routers

Other scenarios (cont’d)

REBOOK-

aware client

REBOOK-aware

server

REBOOK-

unaware server
REBOOK-aware

proxy server
REBOOK-

unaware client

REBOOK-aware

proxy server

REBOOK-

unaware server REBOOK-

unaware client

REBOOK-aware

traffic-shaping

router

REBOOK-aware

traffic-shaping

router

Performance

(access to the forwarding table)

Reference configuration

ART-16-8-8 ~50 K routes

ART ~50 K routes

SMART ~50 K routes

CPE ~50 K routes

BSD Radix ~50 K routes

Binary trie 5,000 routes

LC-trie 5,000 routes

Modified LC-trie 5,000 routes

Prefix-tree 5,000 routes

DTBM 5,000 routes

7-FST 5,000 routes

2-MPT 5,000 routes

239

138

47

191

114

131

246

Speedup

(REBOOK-DLDS handling 10,000,000 routes, one flow each)

99

speedup

3

4.7

4.7

5.3

