
1

Formal Specification and
Programming for SDN

relevant ID:
draft-shin-sdn-formal-specification-01

Myung-Ki Shin, Ki-Hyuk Nam Miyoung Kang, Jin-Young Choi
ETRI Korea Univ.

Proposed SDN RG Meeting@IETF 84 -Vancouver, BC, Canada

What’s Formal Specification ?

• Some definitions from academia
– A formal specification is a specification expressed in a

language whose semantics are formally defined, as well as
vocabulary and syntax.

– The need for a formal semantic definition means that the
specification language must be based on logic, mathematics,
etc., not natural languages.

• Formal verification
– The act of proving or disproving the correctness of designs

or implementations with respect to requirements and
properties with which they must satisfy, using the formal
methods or techniques

2

Why it is Necessary in SDN ?

• SDN network operators and application/service
providers can introduce a new capability by writing a
simple software program.
– Incomplete or malicious programmable entity could cause

break-down of underlying networks shared by
heterogeneous devices and stake-holders.

– Any misunderstanding or diverse interpretations should be
avoided.

• Formal specification can be applied to verification
methods such as theorem proving, model checking,
static analysis, etc.

3

SDN Programming –
Relevant Works (1/3)

• Frenetic and NetCore
– A high-level programming

language that can be used to
write OpenFlow applications
running on top of NOX.

– Neither NOX or Frenetic
perform correctness checking
of updates, limiting their
ability to help in detecting
bugs in the application code
or other issues that may
occur while the network is in
operation.

4

Nate Foster, Rob Harrison, Michael J.
Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker,
"Frenetic: A network programming
language," in Proc. ACM International
Conference on Functional Programming,
September 2011

SDN Programming –
Relevant Works (2/3)

• NICE (No bugs In Controller Execution)

– NICE performs symbolic
execution of OpenFlow
applications and applies model
checking to explore the state
space of an entire OpenFlow
network.

– NICE is a proactive approach that
tries to figure out invalid system
states by using a simplified
OpenFlow switch model.

– It is not designed to check
network properties in real time

5

Marco Canini, Daniele Venzano, Peter Peresini,
Dejan Kostic, and Jennifer Rexford, "A NICE
way to test OpenFlow applications," in Proc.
Networked Systems Design and
Implementation, April 2012

SDN Programming –
Relevant Works (3/3)

• Nettle
– Functional reactive programming for OpenFlow networks

using HASKELL language
– http://haskell.cs.yale.edu/

• ONRC
– http://onrc.stanford.edu/

• HotSDN Workshop (SIGCOMM2012)
– Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole

Schesinger, David Walker, “Abstractions for Network
Update,” HotSDN, 2012.

– …
6

Formal Specification Languages

• SDL (Z.100)
– Standard specification language suitable for real-time and reactive

systems, from requirements to implementation
– Too big for SDN?

• Z Language
– Z could be focused on each switch and controller for emphasis on

their functionality
– It is difficult to specify various states of large networks

• ACSR (Algebra of Communicating Shard Resources)
– ACSR can express processes running concurrently and

communicating the switches and controller
– Forwarding packets can be modeled as prioritized synchronization

of events in ACSR
– It is hard to categorize classification of data packets

7

Our Approach - Common Framework

• We discuss the formally
verifiable networking
framework for SDN, which
consists of the three
components
– Formal specification and

programming,
– Verification methods, and
– Implementation (SDN

control software and
applications)

8

1. Formal
Specification &

Programing

0. Design network model
(e.g., virtual network

topology, access control,
etc.)

2. Verification
Methods

Model
Checking

Theorem
Proving …..

3. Implementation
(SDN Control

Software)

SDN Data plane
(heterogeneous devices,

switches, etc.)

Invariant
Checker

We Assume that SDN has

• Three-TierArchitecture, including
– Tier-1 : Forwarding entities and any

software/hardware components comprising of
them

– Tier-2 : Control and management entities for the
Tier-1

– Tier-3 : Applications and services that take
advantage of the infrastructures based on Tier-1
and Tier-2.

9

Initial thoughts on Requirements of
SDN Programming (1/2)

• Guarantee that the design and implementation of
SDN devices conforms to the standards, correctness
and safety properties.

• Check consistency and safety of their network
configurations and virtual and physical topologies
against any properties to be satisfied with such as:
– No loops and/or blackholes in the network
– Logically different networks cannot interfere with each

other (e.g., traffic isolation)
– New or update configurations conforms to properties of

the network and do not break consistency of existing
networks (e.g., network updates)

10

Initial thoughts on Requirements of
SDN Programming (2/2)

• Support formal semantics in high-level languages, APIs
and underlying protocols for SDN
– Properties that need to be satisfied with by the SDN

should be described in notations with formal semantics

• Support conceptual models to reason about
networks defined, configured, implemented by
software and hardware for SDN more precisely.
– Timing models that capture essential properties and

behaviors of packet flows and data traffic in
– Formalisms that reflect networks and systems behaviors.
– Diverse languages and tools based on the conceptual

model
11

Case Study : SDN Modeling using
ACSR

• SDN modeling using ACSR specification
– Example-1 : OpenFlow 1.0 spec. verification
– Example-2 : Invariant Property Checker of SDN

topology (access control example)

12

Adding SDN-ACSR/Tools between
SDN Controller and Apps

13

Example-1: ACSR Specification of
OF1.0 based Example Topology

14

An example topology

……..

……..

Subtle Ambiguities in OF1.0 Spec.

① An entry that specifies an exact match(i.e., it has no
wildcards) is always the highest priority. All wildcard
entries have a priority ones. If multiple entries have
the same priority, the switch is free to choose any
ordering. [OF1.0]
– Same packets may have different rules ?
– Resolved in OF 1.1+ as setting “CHECK_OVERLAP” bit

② For all packet that do not have a matching flow entry,
a packet-in event may be sent to the controller [OF1.0]
(send OFPT_FLOW_MOD to a switch)
But, no specification regarding delays between
controllers and multi-switches
– Not resolved yet ?

15

Example-2: ACSR Specification of
Access Control Property

① No loops
– Mnoloop=	{}:Mnoloop+	(packetin?,1).P(0)
– P(t)	=	(t	<	TLIMIT)	à (drop?,1).Mnoloop +(t	<	TLIMIT)	à (world?,1).Mnoloop +(t	<	TLIMIT)	à {}:P(t+1)

② Blocklist (the packets cannot traverse)
– Mblocklist=	{}:Mblocklist +	(packet1in?,1).R(0)
– R(t)	=	(t	<	TLIMIT)	à (s24?,1).NIL	+(t	<	TLIMIT)	à {}:R(t+1)	+(t	=	TLIMIT)	àMblocklist

③ Route (the packets reach a switch)
– Mroute=	{}:Mroute+	(packet1in?,1).R(0)
– R(t)	=	(t	<	TLIMIT)	à (s4?,1).Mroute +(t	<	TLIMIT)	à {}:R(t+1)

16

Checking Property Invariance

• SDN_ACSR verifier and tools could check the
invariant properties related to access controls(Sys	||	Mnoloop ||	Mblocklist ||	Mroute)	≈	{}∞	

17

Discussion and Next Step

• Is “proposed SDNRG” interested in this topic ?
• Investigate relevant works and challenging

issues
– Develop or standardize new language ?
– Or, define simple/minimum semantics for SDN ?

• Develop a common framework document for
formally verifiable networking of SDN
– Should be integrated with SDN architecture or

framework works ?
18

References
• Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker, "Frenetic: A network programming
language," in Proc. ACM International Conference on Functional Programming,
September 2011

• Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schesinger, David Walker,
“Abstractions for Network Update,” HotSDN, 2012.

• Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford,
"A NICE way to test OpenFlow applications," in Proc. Networked Systems Design
and Implementation, April 2012

• A. Wang, L. Jia, C. Liu, B. Loo, O. Sokolsky, and P. Basu, Formally Verifiable
Networking,2011.

• J. Choi, I. Lee, and H. Xie, The Specification and Schedulability Analysis of Real-Time
Systems Using ACSR,16th IEEE Real-Time Systems Symp.(RTSS'95), Dec. 1995.

• Nick McKeown, “Making SDNs Work,” ONS2012
• K-H. Nam, et al., Draft Document of Y.FNsdn-fm "Requirements of formal

specification and verification methods for software-defined networking, ITU-T
(work-in-progress), 2012.

• M. Kang et al., Formal Specification for Software-Defined Networks (SDN), CFI'12
(accepted), 2012.

19

