

SDN at Google

Opportunities for WAN Optimization

Edward Crabbe, Vytautas Valancius 8/1/2012

some slides taken from Urs Hölzle's ONS 2012 keynote

• SDN at Google today

• Example SDN Use Case: TE

• Our SDN Experience So Far

• Research Opportunities

Topics

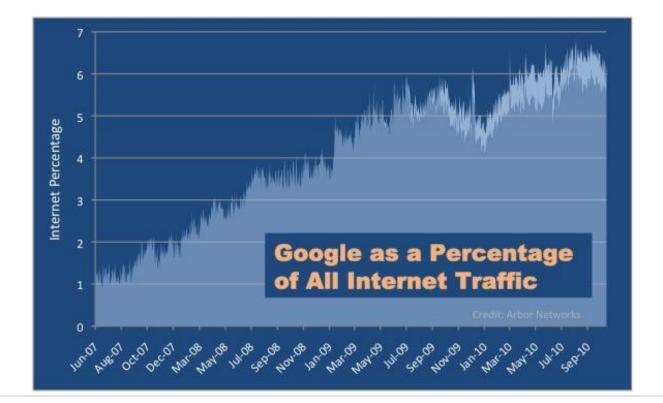
• SDN at Google today

• Example SDN Use Case: TE

• Our SDN Experience So Far

• Research Opportunities

Google's WAN


- Two backbones
 - Internet facing (user traffic)
 - smooth/diurnal
 - externally originated/destined flows
 - Datacenter traffic (internal)
 - bursty/bulk
 - all internal flows
- Widely varying requirements: loss sensitivity, availability, topology, etc.
- Difference in node density, degree and geographic placement
- thus: built two separate logical networks
 - I-Scale
 - G-Scale

Internet Backbone Scale

"If Google were an ISP, as of this month it would rank as the second largest carrier on the planet."

[ATLAS 2010 Traffic Report, Arbor Networks]

WAN TCO

- Cost/bit should go down with additional scale, not up
 - Consider analogies with compute and storage
- However, *cost/bit doesn't naturally decrease with size*
 - Complexity in pairwise interactions and any-to-any communication requires more advanced forecasting and control mechanisms
 - Lack of control and determinism in distributed protocols necessitates worst case over-provisioning
 - Complexity of automated configuration to deal with non-standard vendor configuration APIs
 - existing routing mechanisms do not allow for
 - scheduling
 - optimization of explicit objectives

A Solution: WAN Fabrics

- Goal: manage the WAN as a *system* not as a collection of individual boxes
- Current equipment and protocols don't allow this
 - Internet protocols are node centric, not system centric
 - lack of uniformity in support for monitoring and operations
 - Optimized for survivability and "eventual consistency" in routing

Why Software Defined WAN Google

- Separate hardware from software
 - Choose hardware based on necessary features
 - Choose software based on TE requirements (*not* protocol requirements)
- Logically centralized network control
 - More deterministic
 - More efficient
- Separate monitoring, management, and operation from individual boxes
- Flexibility and Innovation Velocity

Advantages of Centralized TE Google

- Better efficiency with global visibility
- Converges faster to *target optimum* on failure
- Higher Efficiency
 - allows for explicit definition of cost functions
 - allows for in-house development of optimization algorithms
- Deterministic behavior
 - simplifies planning vs. over-provisioning for worst case variability
 - Can directly mirror production event streams for testing
- Supports innovation and more robust SW development
- Controller uses modern server hardware
 - significantly higher performance

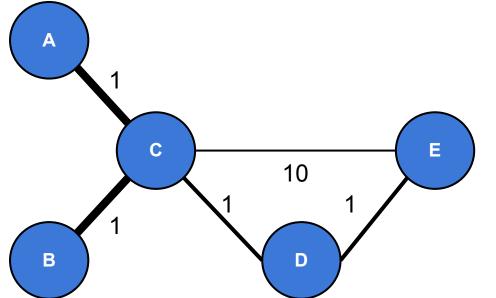
• SDN at Google today

• Example SDN Use Case: TE

• Our SDN Experience So Far

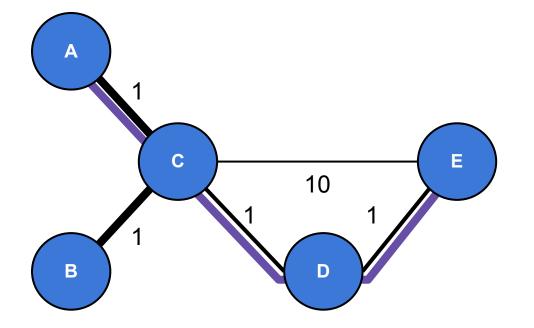
• Research Opportunities

Practical SDN TE Use Cases


- Deadlock Resolution
- Bin Packing
- Scheduling / Calendaring
- Predictability
- Adaptive TE Control Loops
- Constraint Relaxation
- <u>G</u>CO
- Max-Min Fairness
- •
- -

Practical SDN TE Use Cases

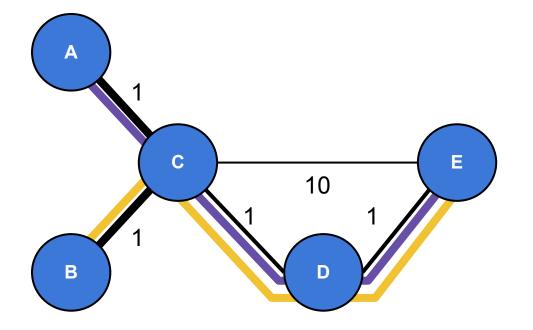
- Deadlock Resolution
- Bin Packing
- Scheduling / Calendaring
- Predictability
- Adaptive TE Control Loops
- Constraint Relaxation
- <u>G</u>CO
- Max-Min Fairness
- •
- •
- •


causes:

- control / dataplane decoupling
- rfc3209 implies no teardown on reservation increase failure
 - demand will be miss signaled for long periods
- lack of global LSP state
- lack of LSP level ingress admission control
 - would require another online or offline control mechanism
 - tension between overprovisioning level and transport elasticity

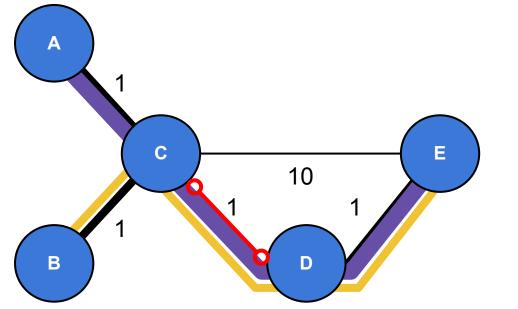
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	5
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	A	E	2
2	2	В	E	2
3	1	Α	E	20



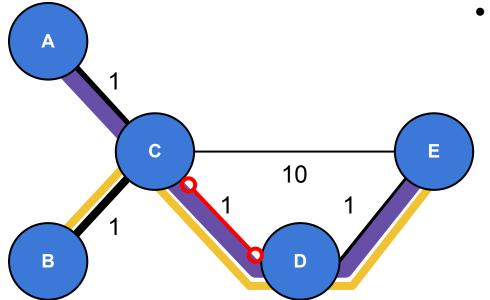
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	5
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
- 1	1	А	E	2
2	2	В	E	2
 3	1	A	ΕΕ	20



Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	5
C-D	1	10
D-E	1	10

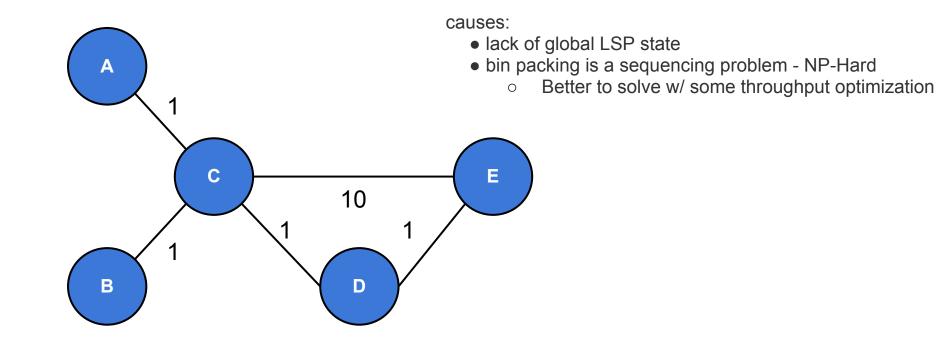
Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	2
 3	11	Α	E	20



- LSP 1:
 - demand cannot be satisfied
 - LSP not torn down due to 3209
 - usage controlled due to control/data plane decoupling
 - ⇒ information in IGP, RSVP is inaccurate
- LSP 2
 - lack of visibility w/r/t LSP 1 misbehavior results in unecessary, potentially prolongued degradation in service
 - could be rerouted along C-E link modulo flow performance constraints

Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	5
C-D	1	10
D-E	1	10

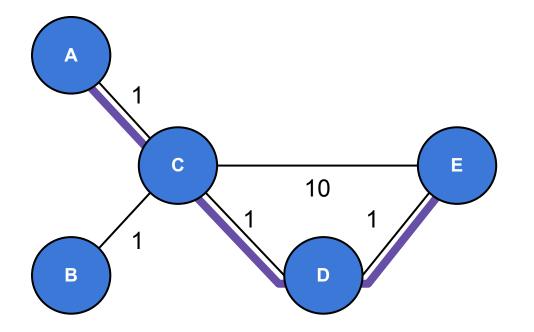
Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	2
3	1	Α	E	20


- lack of LSP level ingress admission control
 - would require another online or offline control mechanism
 - offline: need northbound API
 - online: back to autopbw issues
 - tension between overprovisioning level and transport elasticity

Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	5
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	2
3	11	Α	E	20

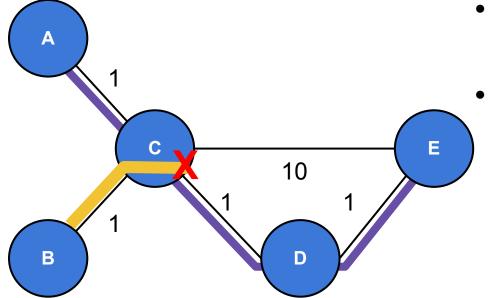
Bin Packing



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	10	5
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	5
2	2	В	E	10

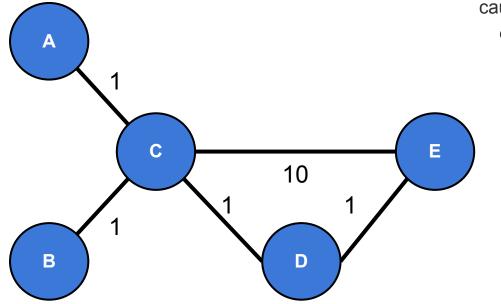
Bin Packing



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	10	5
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
- 1	1	А	E	5
 2	2	В	E	10

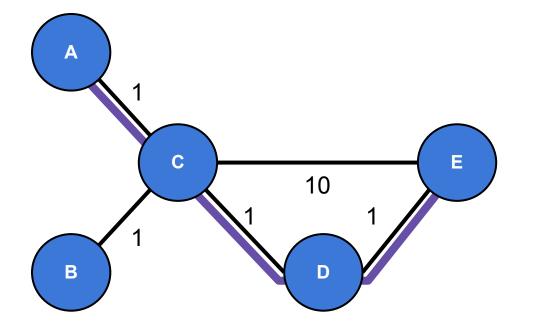
Bin Packing



- unable to shuffle demands w/o
 - some offline control
 - stateful knowledge network LSPs
- 33% efficiency in capacity usage
 - efficiency dictated by order of event arrival

Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	10	5
C-D	1	10
D-E	1	10

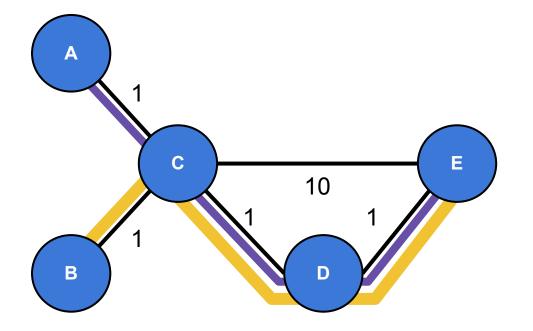
Time	LSP	Src	Dst	Demand
1	1	А	E	5
2	2	В	E	10


causes:

- autobw empirically derives demand with single period hysteresis
 - unable to use
 - historical timeseries
 - apriori knowledge of demand
 - network must be overprovisioned for either
 - offline: worst case demand over reopt interval
 - (⇔) online: (autobw) reopt trigger threshold + safety margin

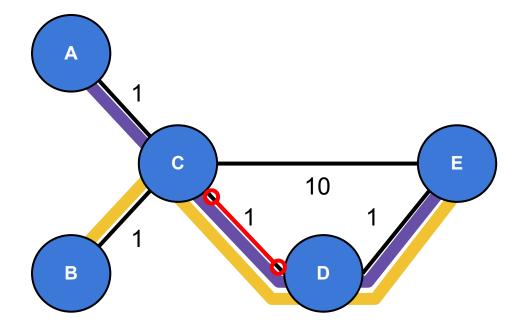
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	A	E	2
2	2	В	E	7
3	1	A	E	7
3+k	1	A	E Google Con	7 idential and Proprietary



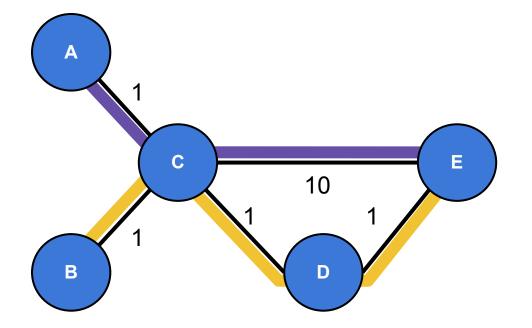
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	7
3	1	A	E	7
3+k	1	A	E Google Con	7 idential and Proprietary



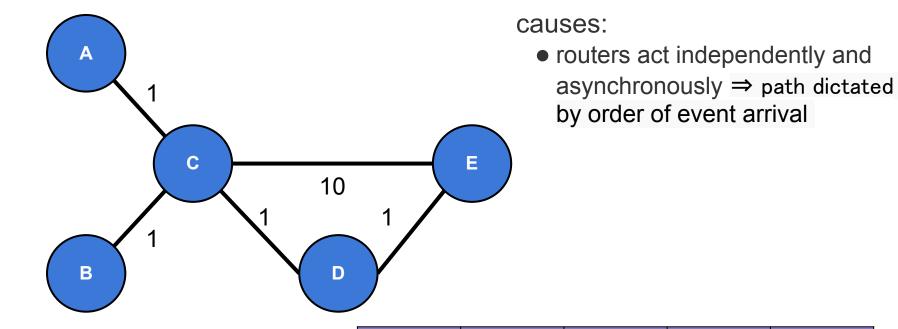
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	7
3	1	А	E	7
 3+k	1	A	E Google Con	7 idential and Proprietary



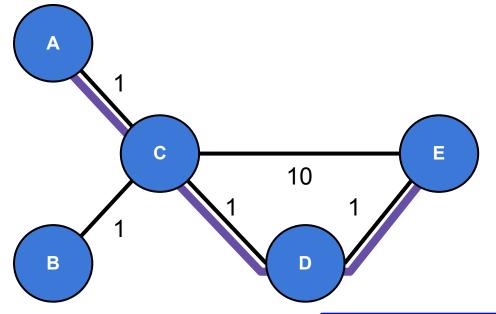
Link	Metric	Capacity
A-C	1	20
B-C	1	20
C-E	10	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	7
3	1	А	E	7
 3+k	1	A	E Google Con	7 idential and Proprietary



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	10	10
C-D	1	10
D-E	1	10

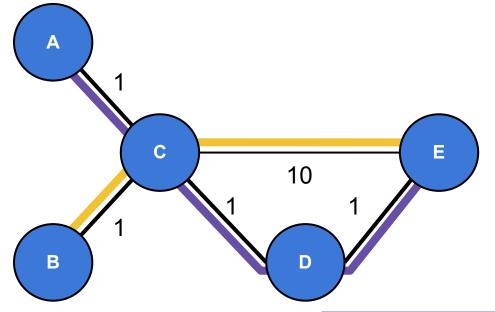
Time	LSP	Src	Dst	Demand
1	1	А	E	2
2	2	В	E	7
3	1	А	E	7
> 3+k	1	A	E Google Con	7 idential and Proprietary



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	1	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	Е	7
2	2	В	E	7

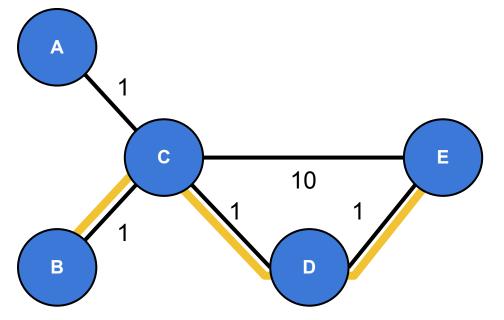
Time	LSP	Src	Dst	Demand
1	2	В	E	7
2	1	А	E Google (Confidential and Proprieta


Time	LSP	Src	Dst	Demand
1	1	А	E	7
2	2	В	E	7

Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	1	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	2	В	E	7
2	1	A	E Google (Confidential and Proprietar

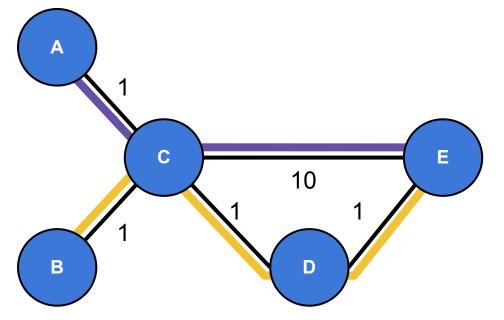
Time	LSP	Src	Dst	Demand
1	1	А	Е	7
2	2	В	E	7



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	1	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	7
- 2	2	В	E	7

Time	LSP	Src	Dst	Demand
1	2	В	E	7
2	1	А	E Google (Confidential and Proprieta



Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	1	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	7
2	2	В	E	7

Time	LSP	Src	Dst	Demand
- 1	2	В	E	7
2	1	А	E Google (Confidential and Proprieta

Link	Metric	Capacity
A-C	1	10
B-C	1	10
C-E	1	10
C-D	1	10
D-E	1	10

Time	LSP	Src	Dst	Demand
1	1	А	E	7
2	2	В	E	7

Time	LSP	Src	Dst	Demand
1	2	В	E	7
2	1	А	E Google (Confidential and Proprieta

Topics

• SDN at Google today

• Example SDN Use Case: TE

• Our SDN Experience So Far

• Research Opportunities

Google SDN Experiences

- Much faster iteration time: deployed production-grade centralized traffic engineering in two months
 - \circ $\,$ fewer devices to update $\,$
 - much better testing ahead of rollout
- Simplified, high fidelity test environment
 Can emulate entire backbone in software
- Hitless SW upgrades and new features
 - Almost no packet loss and no capacity degradation
 - Most feature releases do not touch the switch
 - most state does not have to carried by network protocols

Topics

• SDN at Google today

• Example SDN Use Case: TE

• Our SDN Experience So Far

Research Opportunities

SDN had been Around for Quite a While

Ipsilon GSMP	1996
Cambridge's The Tempest	1998
IETF FORCES	2000
IETF PCE	2004
Princeton's Routing Control Platform	2004
4d Initiative	2005
Ethane	2007
Openflow	2008

SDN Opportunities

And yet all of SDN is in it's infancy:

- 2. Controller
 Application abstractions
 north-bound
- 3. Controller Controller abstractions
- 4. Applications

SDN Opportunities

And yet all of SDN is in it's infancy:

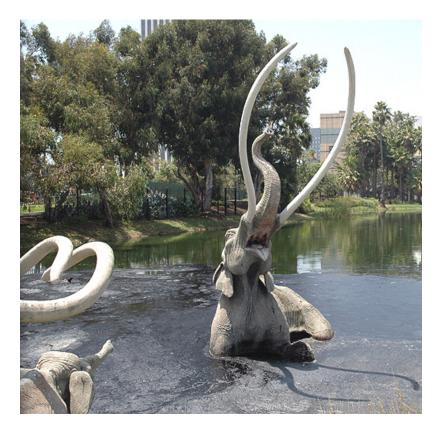
- 3. Controller Controller abstractions
- 4. Applications

SDN South-Bound

- OpenFlow: Still bare-bones but enough for initial production deployment with apriori knowledge of system capabilities
- **ForCES**: untested, no opensource implementation currently
- **PCEP**: low adoption currently
- **IRS**(???), many other less developed protocols.

All of these abstractions are lacking in expressiveness and/or adoption.

SDN North-Bound



- What should the north-bound API look like?
- Should industry:
 - standardize?
 - wait for a de-facto controller to emerge with its own interfaces and an app store?
- policy
 - composition
 - o decomposition
 - optimal state distribution
- Some researchers are tackling this problem
 - Stanford ONRC
 - Nick@(?): Procera
 - JRex@ Princeton: <u>http://www.frenetic-lang.org/papers/</u>

SDN East-West

• Inter-domain SDN...

Having a centralized view allows new applications. Many of these applications require novel research. A few of the most interesting to us are:

- Traffic Engineering
 - Intra-domain
 - Inter-domain egress
 - optimization
 - scheduling
 - control theory
- Security
- Event Based Control

Some Examples of Recent Google Research from InfoCom 2012:

- Google
- How to split a flow by Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal Segalov
- Upward max-min fairness by Emilie Danna, Avinatan Hassidim, Haim Kaplan, Alok Kumar, Yishay Mansour, Danny Raz, and Michal Segalov (runner up for best paper)
- A practical algorithm for balancing the max-min fairness and throughput objectives in traffic engineering by Emilie Danna, Subhasree Mandal, and Arjun Singh

Conclusions

- Despite it's relative immaturity, SDN is ready for realworld use
 - Google's datacenter WAN successfully runs on SDN (OpenFlow)
 - Enables rapid rich feature deployment
- Many Research Opportunities