
Tail Loss Probe (TLP)
Converting RTOs to fast recoveries

draft-dukkipati-tcpm-tcp-loss-probe-00

Nandita Dukkipati, Neal Cardwell,
Yuchung Cheng, Matt Mathis

{nanditad, ncardwell, ycheng, mattmathis}@google.com

Losses hurt Web latency

● Problem: timeouts are expensive for short flows
○ RTO is primary recovery mode for Web traffic
○ Normalized RTO values (#RTTs)

 50%ile 75%ile 90%ile 95%ile 99%ile
 5 12 29 54 214

● Lossy responses last 10
times longer than lossless
ones.

● 6.1% responses and 30%
of TCP connections
experience losses.

How does TCP recover from losses?
TCP retransmission breakdown in two Google DCs.

Web YouTube

● Tail segments are twice more likely to be lost than start ones.
● Losses are bursty and contiguous. [A L *] pattern more

common than [A L * S * L].

Tail Loss Probe (TLP)

Key idea: convert RTOs to fast recovery.
● Transmit loss probe after approx. 2.

RTT in absence of ACKs.
● Retransmit last packet (or new if

available) to trigger fast recovery.

TLP example

TLP pseudocode
Probe timeout (PTO): timer event indicating that an ACK is overdue.
Schedule probe on transmission of new data in Open state:
 -> Either cwnd limited or application limited.
 -> RTO is farther than PTO.
 -> FlightSize > 1: schedule PTO in max(2*SRTT, 10ms).
 -> FlightSize == 1: PTO is max(2*SRTT, 1.5*SRTT+WCDelAckT)

When probe timer fires:
(a) If a new previously unsent segment exists:
 -> Transmit new segment.
 -> FlightSize += SMSS. cwnd remains unchanged.

(b) If no new segment exists:
 -> Retransmit the last segment.

(c) Reschedule PTO.

ACK processing:
 -> Cancel any existing PTO.
 -> Reschedule PTO relative to time at which the ACK is received

Experiments with TLP

● 2-way experiment over 10 days: Linux baseline versus TLP.
● 6% avg. reduction in HTTP response latency for image search.
● 10% reduction in RTO retransmissions.
● 0.6% probe overhead.

Mobile only

Detecting repaired losses: basic
algorithm

● Problem: congestion control not invoked if TLP repairs
loss and the only loss is last segment.

● Basic idea
○ TLP episode: N consecutive TLP segments for same

tail loss.
○ End of TLP episode: ACK above SND.NXT.
○ Expect to receive N TLP dupacks before episode

ends
● Algorithm is conservative: cwnd reduction can occur with

no loss.
○ Delayed ACK timer.
○ ACK loss.

TLP properties

● Property 1: Unifying recovery regardless of loss position.
○ Example: 10 packet burst. Last or middle segment

losses are both recovered via fast recovery.

● Property 2: fast recovery of any N-degree tail loss for any
sized transaction.

○ TLP combined with Early-retransmit variant recovers
any tail loss via fast recovery.

TLP properties (contd.)
#losses scoreboard after

TLP ACKed
mechanism outcome

A A A L A A A A TLP loss
detection

All repaired

A A L L A A L S Early retransmit All repaired

A L L L A L L S Early retransmit All repaired

L L L L L L L S FACK fast
recovery

All repaired

>=5 L ...L S FACK fast
recovery

All repaired

Key:
A = ACKed; L = Lost; S = SACKed segment.

Conclusion

● Bursty applications have made end of transaction losses
a common case.

● TLP unifies TCP's loss recovery schemes by allowing fast
recovery of any N-degree tail loss.

● Simple to implement and deploy.
● What's next? Forward Error Correction (FEC) in TCP.

