
Kathie Nichols’

CoDel
present by Van Jacobson to the

IETF-84 Transport Area Open Meeting
30 July 2012

Vancouver, Canada

2

3

Sender Receiver

4

Sender Receiver

5

Sender Receiver

• Queue forms at a bottleneck

• There’s probably just one bottleneck
(each flow sees exactly one)

➡ Choices: can move the queue (by making a
new bottleneck) or control it.

5

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

6

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

6

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.

➡ queue length min()
over a sliding window
measures bad queue ...

➡ ... as long as window is
at least an RTT wide.

7

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.

➡ tracking min() in a
sliding window gives
bad queue ...

➡ ... as long as window is
at least an RTT wide.

8

Time

Q
ue

ue
 le

ng
th

Time

Q
ue

ue
 le

ng
th

Good Queue / Bad Queue

• Good queue goes
away in an RTT, bad
queue hangs around.

➡ tracking min() in a
sliding window gives
bad queue ...

➡ ... as long as window is
at least an RTT wide.

8

How big is the queue?

• Can measure size in bytes
 – interesting if worried about overflow
 – requires output bandwidth to compute
 delay

• Can measure packet’s sojourn time
 – direct measure of delay
 – easy (no enque/deque coupling so works
 with any packet pipeline).

9

Sojourn Time

• Works with time-varying output bandwidth
(e.g., wireless and shared links)

• Better behaved than queue length – no high
frequency phase noise

• Includes everything that affects packet so
works for multi-queue links

10

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 s

ize
 (m

s.
)

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 d

el
ay

 (m
s.

)Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck;

80ms RTT; TCP Reno)
11

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 s

ize
 (m

s.
)

24.5 25.0 25.5 26.0

0
1

2
3

4
5

6

Time (sec.)

Q
 d

el
ay

 (m
s.

)Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck;

80ms RTT; TCP Reno)
11

Two views of a Queue

Top graph is sojourn time,
bottom is queue size.

(one ftp + web traffic;
10Mbps bottleneck;

80ms RTT; TCP Reno)
25.00 25.05 25.10 25.15 25.20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (sec.)

Q
 s

ize
 (m

s.
)

25.00 25.05 25.10 25.15 25.20

0.
0

0.
5

1.
0

1.
5

2.
0

Time (sec.)

Q
 d

el
ay

 (m
s.

)

12

Multi-Queue behavior

13

a) Measure what you’ve got

b) Decide what you want

c) If (a) isn’t (b), move it toward (b)

Controlling Queue

14

a) Measure what you’ve got

b) Decide what you want

c) If (a) isn’t (b), move it toward (b)

Controlling Queue

- Estimator

- Setpoint

- Control loop

15

How much ‘bad’ queue
do we want?

• Can’t let the link go idle (need one or two
MTU of backlog)

• More than this will give higher utilization at
low degree of multiplexing (1-3 bulk xfers)
at the cost of higher delay

• Can the trade-off be quantified?

16

0 20 40 60 80 100

75
80

85
90

95
10

0

Utilization vs. Target for a single Reno TCP

Target (% of RTT)

Bo
ttl

en
ec

k
Li

nk
 U

til
iz

at
io

n
(%

 o
f m

ax
)

17

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

18

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

18

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

19

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

19

20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

• Result holds independent of bandwidth and
congestion control algorithm (tested with
Reno, Cubic & Westwood).

20

• Setpoint target of 5% of nominal RTT (5ms
for 100ms RTT) yields substantial utilization
improvement for small added delay.

• Result holds independent of bandwidth and
congestion control algorithm (tested with
Reno, Cubic & Westwood).

➡ CoDel has no free parameters: running-
min window width determined by worst-
case expected RTT and target is a fixed
fraction of same RTT.

20

Algorithm &
Control Law

(see I-D, CACM paper and Linux kernels >= 3.5)

21

• provides isolation - protects low rate CBR
and web for a better user experience.
Makes IW10 concerns a non-issue.

• gets rid of bottleneck bi-directional traffic
problems (‘ack-compression’ burstiness)

• improves flow mixing for better network
performance (reduce HoL blocking)

Eric Dumazet has combined CoDel with a simple SFQ
(256-1024 buckets with RR service discipline). Cost in

state & cycles is small and improvement is big.

➡ Since we’re adding code, add fqcodel, not codel.
22

• thanks to Jim Gettys and the ACM, have
dead-tree publication to protect ideas

• un-encumbered code (BSD/GPL dual-license)
available for ns2, ns3 & linux

• in both simulation and real deployment,
CoDel does no harm – it either does nothing
or reduces delay without affecting xput.

Where are we?

23

What needs to be done
• Still looking at parts of the algorithm but

changes likely to be 2nd order.

• Would like to see CoDel on both ends of
every home/small-office access link but:

- We need to know more about how traffic
behaves on particular bottlenecks (wi-fi,
3G cellular, cable modem)

- There are system issues with deployment

24

Deployment Issues

RTR/AP Cable
Modem HeadendHome

Gateway

25

Deployment Issues

RTR/AP Cable
Modem HeadendHome

Gateway

Protocol
stack

Device
Driver DeviceLinux

kernel

26

Deployment Issues

RTR/AP Cable
Modem HeadendHome

Gateway

Protocol
stack

Device
Driver DeviceLinux

kernel

Phone
CPU

3G
Modem RAN SGSN?Cellphone

27

Our thanks to:

• Jim Gettys

• CoDel early experimenters,
particularly Dave Taht

• Eric Dumazet

• ACM Queue

• Eben Moglen

28

