
Implementing CoAP
for Class 1 Devices

draft-kovatsch-lwig-class1-coap-00

Matthias Kovatsch, ETH Zurich

Class 1 Stack Configuration

Layer Protocol

Application CoAP

Transport UDP

Network IPv6 / RPL

Adaption 6LoWPAN

MAC CSMA / link-layer bursts

Radio Duty Cycling IEEE 802.15.4e / ContikiMAC / A-MAC

Physical IEEE 802.15.4

MCUs
~ 100 KiB ROM
~ 10 KiB RAM

COAP IMPLEMENTATION
Experience from Erbium CoAP for Contiki

Memory Management

• Static

• Key parameters

– Message buffer size (maximum message size)

– Number of open transmissions

• Typical sizes

– Messages with 128 or 256 bytes of payload

– Often not even full MTU of 1280 bytes supported

Message Buffers

• Cooperative multi-threading

– In-place processing

– Strings point directly into IP buffer

– Numerics parsed into variables (message struct)

– Create reply directly in IP buffer? Good for ACKs

IP buffer for incoming and outgoing packets

*token *uri-path
*payload CoAP

header
IP + UDP
headers

Separate Responses

• Required for long-lasting resource handlers

• Often done in split-phase execution, e.g.:
– Activate sensor and wait for callback

– Send UART command and wait for reply

• Provide API to avoid code duplication
– automatically ACK request

– store relevant information such as remote address

– resume later to create response

Retransmissions

• Provide message buffers

– Store serialized message for retransmissions

• Requests do not change

• CON Responses usually from long-lasting handler

– Provide payload part as application buffer
e.g., to serialize JSON

– Problem: Maximum header size estimation

Header Payload

Observing

• Manage observe entries per resource

– Saves space of resource handles in list

– Store address, port, token, and last MID

• Provide one message buffer per obs. resource

– Serialize message once and patch address + token

– Store each retransmission state in observe entry

– Easy to continue retransmissions with new state

Blockwise Transfers

• Expensive to provide buffer for whole transfer

– Advantage of Blocks over IP fragments is that
applications can make use of partial information

– On-the-fly processing

– Ordered blocks required at the receiver

• Main sender problem: sonprintf()

– How to slice a long string into blocks?

– Resource-specific generator function
good for RAM, but bad for ROM

Deduplication

• Generic filter with endpoint list is heavy

– (40+2+2 + timestamp) times number of clients

• Aim for idempotent requests

• Do optimized filtering in resource handlers

– Number of clients to manage potentially smaller

– Can exploit application state for detection

LOW POWER WIRELESS
Experience from wireless sensor networks and ubiquitous computing

Radio Duty Cycling

• Implemented in independent layer

• Virtually always-on

• Trades energy for latency

• Example: ContikiMAC

– Server-initiated protocol

– 0.3% idle duty cycle at 4 Hz channel checks

• Well-suited for IEEE 802.15.4

Sleepy Nodes

• Impact on application layer

– [I-D.vial-core-mirror-proxy]

– [I-D.fossati-core-publish-option]

– [I-D.rahman-core-sleepy]

• Useful for other physical layers

– Single hop

– Long network association times

– Example: low-power Wi-Fi

• Useful for energy harvesting

