

fq_codel status

Jim Gettys
Bell Labs

2

fq_codel Packet Scheduling: similar to airport
security queues...

Flows are identified. The first packet(s) from new flows are scheduled before
packets from flows that have built a queue. If a flow's queue empties, it is
eligible to again be considered a new flow. CoDel is applied to control the
queue length in any flow. Result: timely delivery, and mixing of flows

f1 f2 f3 f4 f5 f6 f7

Sparse or “new” flows Flows that have recently built queues

3

fq_codel works and solves it's
intended problem

● fq_codel even works decently well with BitTorrent
traffic, without diffserv marking (but we could do
better if traffic were marked)

● Even without any packet classification real time
applications such as VOIP and gaming “work”
under load in real world environments

● We argue that most needs for classification are not
necessary once running fq_codel; but hints are
always useful. At the very edge of the network,
marking and classification may have enough value
to bother to use, primarily for priority access to the
medium and providing strong usage guarantees

Linux Implementation

● In Linux since Linux 3.3, since July 2012
● Widely tested under many environments, since you can often

enable it without building your own kernel
● Now “on by default” in OpenWrt on all interfaces
● In general, we're happy, and performance is great
● So far, various minor tweaks to fq_codel have not tested out

enough to be worth worrying about
● But as always, there are issues; real implementation !=

algorithm...

Next steps for Linux

● What should the “default” queue discipline(s)
and configuration for Linux be, to replace
PFIFO_FAST?
– fq_codel is “first, do no harm”, but may not be

effective in some environments (e.g. data centers)

● This discussion is underway, but will take
meetings at the Linux Plumber's Conference to
socialize

● Device drivers...

Device Drivers

● Kernel interface to drivers should be rethought
● Input buffering can also be an issue; people

often overlook it
– fq_codel can only control buffers under its control:

device drivers have additional buffering: e.g.
transmit/receive rings, error correction buffering

● Offload engines cause “interesting” *as in the
Chinese curse) problems, on many paths,
particularly in concert with certain broadband
gear that merges TCP acks: fq_codel helps this
situation, but offload engines get in the way

Linux Device Drivers

● Ethernet has the BQL framework for Ethernet
transmit ring control

● But we don't have an equivalent for other
network frameworks: e.g. VDSL

● 802.11 is a particular challenge due to
aggregation and also input buffering for error
correction

● Similar problems probably exist in LTE drivers
in handsets (and base stations)

Input Buffering

● Often overlooked, but it can become a serious
issue: e.g. 802.11 drivers, or....

● If your processor is wimpy, the bottleneck can
shift to your input buffer from your output buffer
– fq_codel needs “ingress” timestamping; the current

Linux fq_codel implementation timestamps on entry to
fq_codel's queue, and this can be a problem if your
hardware receives packets for a “long time” without
processor intervention

– Timestamps should be applied in a “timely” way on
ingress to a system, rather than when added to the
output queue

Driver bug? Input buffering?

Future work

● Wireless
– is inherently highly variable bandwidth for nodes, on

low time scales

– How does CoDel's strategy work on such networks?
Do we need something better?

● Scaling
– In great shape @ 10G: it's 2% of a single modern CPU

core, while increasing network utilization

– Mixing flows is good for the health of the network

– Can you apply the algorithm all the way up to 1000G
routers? We think so, but careful cache analysis
needs to be done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

