
Source-sensitive routing

Matthieu Boutier, Juliusz Chroboczek
Laboratoire PPS

Université Paris-Diderot (Paris 7)

29 July 2013

1/25

Next-hop routing

Most of the internet uses next-hop routing.
– a router examines the destination of a packet;
– a router chooses the next hop only.

Routing table: maps prefix to next hop:

(2001:DB8:0:2::/64,B)
(2001:DB8:0:3::/64,C)

2/25

Next-hop routing: specificity

In general, routing tables are ambiguous.

Internet A B C LAN

(2001:DB8:0:2::/64,C)
(::/0,A)

If a packet is destined to 2001:DB8:0:2::42,
both entries match.

The entry chosen is the most specific :
“longest prefix rule”.

3/25

Next-hop routing: specificity (2)
The entry chosen is the most specific :
“longest prefix rule”.

A prefix P is more specific than Q,

P ≤ Q

when

for all packets p,p ∈ |P| implies p ∈ |Q|

or, equivalently,
|P| ⊆ |Q|.

Property: any two prefixes are either disjoint or
ordered. We call this a locally total order.

4/25

Limitations
Limitations: some routing policies cannot be
implemented by next-hop routing.

C

??
??

??
??

A B

��������

??
??

??
? S

D

�������

If B has selected C as its next hop to S, then there
is no way A can send its packets to S through D.
(The route A · B ·D · S cannot be selected since its
prefix B ·D · S has not been selected.)

B should chose the nexthop depending on the
packet’s source address.

5/25

Limitations (2)

Home network connected to two ISPs:

ISP A ISP B

CPE A

NNN
NNN

NNN
N CPE B

ppp
ppp

ppp
p

network

There are two default routes!

The network must choose the right CPE depending
on the source address.

6/25

Limitations (3)

Network with a tunnel (VPN).

If the tunnel announces a default route, again,
there are two default routes. The tunnel has a
tendency to enter itself.

Usual solution: host route towards the tunnel
endpoint.
Cleaner solution: packets routed depending on
their source.

7/25

Manually configured routing rules

Under Linux, such situations are usually solved by
using manually configured routing rules:

ip rule add from 192.168.4.0/24 table 4
ip rule add from 0.0.0.0/0 table 5

Similar features exist in some other OSes.

Not applicable to homenet:
– manual configuration;
– fixed topology.

8/25

Source routing

Fully general solution source routing.

In source routing, the sending host determines the
full route to the destination and inserts it in the
packet header. Routers are dumb.

See [Clark 1980] for a convincing argument in
favour of source routing.

Not usable in the Global Internet :
– source-routed packets are easily identified and

shot down by a hostile ISP;
– recently forbidden for claimed security reasons

(RFC 5095).

9/25

Source routing

Fully general solution source routing.

In source routing, the sending host determines the
full route to the destination and inserts it in the
packet header. Routers are dumb.

See [Clark 1980] for a convincing argument in
favour of source routing.

Not usable in the Global Internet :
– source-routed packets are easily identified and

shot down by a hostile ISP;
– recently forbidden for claimed security reasons

(RFC 5095).

9/25

Source-sensitive routing
Source-sensitive or source-specific routing is a
mild generalisation of next-hop routing.
A router still chooses just the next hop, but can
examine both the destination and the source.

Routing tables now map (dest, source) pairs
(“patterns”) to next hops :

(2001:DB8:0:2::/64,::/0,B)
(2001:DB8:0:3::/64,::/0,C)
(::/0,2001:DB8:0:2::/64,D)
(::/0,2001:DB8:0:3::/64,E)

Note: we write the destination first unlike
[Troan 2013].

10/25

Source-sensitive routing (2)

Source-sensitive routing is a compromise between
next-hop routing and source routing:

– routing choices are firmly in the hands of the
routers (like in next-hop routing);

– hosts can communicate their routing choices
to the network by choosing a source address.

The largest subset of source routing that’s
deplyable?

11/25

Source-sensitive routing: specificity

Recall the specificity ordering :

(D,S) ≤ (D′,S′) when p ∈ |(D,S)| implies p ∈ |(D′,S′)|

This is a pointwise product:

(D,S) ≤ (D′,S′) when D ≤ D′ and S ≤ S′.

Unfortunately, this is no longer a (locally) total
order.

12/25

Source-sensitive routing: ambiguity
The following pair of patterns are neither disjoint
nor ordered:

(2001:DB8:0:2::/64,::/0)
(::/0,2001:DB8:0:3::/64)

A packet destined to 2001:DB8:0:2::1 and
sourced from 2001:DB8:0:3::1 matches both
patterns.

Therefore, the following routing table is
ambiguous:

(2001:DB8:0:2::/64,::/0,B)
(::/0,2001:DB8:0:3::/64,C)

We call this situation a conflict.

13/25

Source-sensitive routing: ambiguity
The following pair of patterns are neither disjoint
nor ordered:

(2001:DB8:0:2::/64,::/0)
(::/0,2001:DB8:0:3::/64)

A packet destined to 2001:DB8:0:2::1 and
sourced from 2001:DB8:0:3::1 matches both
patterns.

Therefore, the following routing table is
ambiguous:

(2001:DB8:0:2::/64,::/0,B)
(::/0,2001:DB8:0:3::/64,C)

We call this situation a conflict.
13/25

Source-sensitive routing: ambiguity (2)

Destination

S
o
u
rc
e

Ambiguous
area

14/25

Solving ambiguity (1)

In order to resolve conflicts, we need to choose a
disambiguation rule.

Properties:
– the disambiguation rule must induce a locally

total ordering (else conflicts);
– the disambiguation rule must be the same for

all routers (else persistent routing loops).

Any linearisation of the specificity ordering will
work, as long as it satisfies the above properties.

15/25

Solving ambiguity (2)
Destination wins

Consider the following topology:

Internet A B C LAN

A announces a source-sensitive default route

(::/0,2001:DB8:0:3::/64)

while C announces a route towards its connected
LAN:

(2001:DB8:0:3::/64,::/0)

A packet from B that matches both routes should
be routed toward C — the only choice that has a
chance of reaching the LAN.

In case of conflict, the destination wins.
The same semantics has been proposed by Troan,
Baker and others.

16/25

Solving ambiguity (3)
Destination wins

In case of conflict, the destination wins.

(D,S) ≤ (D′,S′) when D < D′

or D = D′ and S ≤ S′

This is just the lexical product of destination by
source.

(This is one reason why we write destination first
in our routing tables.)

17/25

Implementation

Two existing implementations:
– Stenberg: special case for OSPFv3 (BIRD) on

Linux;
– Boutier: fully general case for Babel on Linux.

(Rumours of a third implementation?)

Both implementations use the Linux rule API which
has exactly the wrong semantics.

Something needs to be done to force the right
behaviour in the presence of ambiguity.

18/25

Implementation (2)
Disambiguation routes

Linux’s kernel API has the wrong semantics. We
need to force behaviour in ambiguous cases.

Solution: insert enough disambiguation routes to
avoid ambiguity.

(2001:DB8:0:2::/64,::/0,B)
(::/0,2001:DB8:0:3::/64,C)

(2001:DB8:0:2::/64,2001:DB8:0:3::/64,B)

19/25

Implementation (3)
Disambiguation routes

Destination

S
o
u
rc
e

Disambiguation
route

20/25

Implementation (4)
Boutier’s algorithm computes disambiguation
routes dynamically and inserts them in the kernel
tables.

It does not keep a list of previously inserted
disambiguation routes: recomputes the set of
disambiguation routes when flushing a route.

Boutier has a complete implementation of his
algorithm. (Minor limitations when running
multiple routing protocols on a single host.)
Boutier’s implementation manipulates kernel
tables dynamically — no manual intervention (just
like with an ordinary routing deamon).

git://git.wifi.pps.univ-paris-diderot.fr/
babels.git

21/25

git://git.wifi.pps.univ-paris-diderot.fr/babels.git
git://git.wifi.pps.univ-paris-diderot.fr/babels.git

Implementation (4)
Boutier’s algorithm computes disambiguation
routes dynamically and inserts them in the kernel
tables.

It does not keep a list of previously inserted
disambiguation routes: recomputes the set of
disambiguation routes when flushing a route.

Boutier has a complete implementation of his
algorithm. (Minor limitations when running
multiple routing protocols on a single host.)
Boutier’s implementation manipulates kernel
tables dynamically — no manual intervention (just
like with an ordinary routing deamon).

git://git.wifi.pps.univ-paris-diderot.fr/
babels.git

21/25

git://git.wifi.pps.univ-paris-diderot.fr/babels.git
git://git.wifi.pps.univ-paris-diderot.fr/babels.git

Interoperability with plain Babel
Boutier’s fork of Babel interoperates with plain
Babel:

– source-sensitive routes are encoded as a
separate TLV, ignored by plain Babel;

– no persistent routing loops will occur whatever
the topology;

– blackholes might occur unless source-sensitive
routers form a connected subgraph of the
network.

If the topology is wrong, a hybrid Babel network
fails gracefully. This is analogous to what happens
when filtering.

It is not correct in general to cast source-sensitive
routes to non-specific ones. Persistent routing
loops might occur.

22/25

Interoperability with plain Babel
Boutier’s fork of Babel interoperates with plain
Babel:

– source-sensitive routes are encoded as a
separate TLV, ignored by plain Babel;

– no persistent routing loops will occur whatever
the topology;

– blackholes might occur unless source-sensitive
routers form a connected subgraph of the
network.

If the topology is wrong, a hybrid Babel network
fails gracefully. This is analogous to what happens
when filtering.

It is not correct in general to cast source-sensitive
routes to non-specific ones. Persistent routing
loops might occur.

22/25

Terminology issues

We need help from people good at coining terms:
– source-sensitive routing? source-specific

routing?
– (D,S) pair: pattern? generalised prefix?

routing class?
– ordered or disjoint: locally-total order?
– partial and total specificity orderings:

natural ordering and strong ordering?

23/25

Status and further work
– Production-quality implementation (done);
– more testing (in progress);
– merge the implementation into Babel (not yet);
– write a better Internet-Draft

(good feedback (thanks!), in progress);
– write-down the algorithm (in progress);
– prove the algorithm correct

(not difficult?);
– write a cool demo (Mosh? MPTCP?)

(not started);
– work out interoperability issues

(good progress);
– work out OSPF/IS-IS issues (not started).

24/25

Conclusion
Source-sensitive routing is a mild extension to
next-hop routing that is deployable in practice,
politically acceptable that solves a number of
real-world problems some of which are relevant to
homenet.

– Complete implementation exists and is freely
available;

– interesting problems, theoretical, operational
and practical;

– well-understood properties;
– write-up in progress.

Rejoice!

25/25

