The Opus Codec

Technical Plenary IETF 87 Berlin, DE July 29, 2013

Jean-Marc Valin, Greg Maxwell, Peter Saint-Andre, Timothy B. Terriberry, Emil Ivov, Lorenzo Miniero, Justin Uberti

Outline

- Remote Participation Experiment
- Overview of Opus
- Testing
- CODEC WG History and Lessons Learned
- Future work
- Opus deployment panel

IETF Remote Participation

- Meetecho provides remote participation to IETF séssions
 - http://ietf87.conf.meetecho.com/
- Tutorial:

http://ietf87.conf.meetecho.com/index.php/WebRTC_Interface

- Conference room associated with a session
 - Audio from the physical room mixer
 - Video from a webcam
- Active participants (can contribute to the mix)
 - Java Applet, WebRTC, Softphones, PSTN
- Passive participants (can only watch/listen)
 - Conference mix made available as a stream
 - RTSP, RTMP, HTML5

Opus Experiment (Live Now!)

- Remote participation for this technical plenary:
 - http://www.meetecho.com/ietf87/tech_plenary
- For information on remote participation and additional links relating to OPUS, please check the IAB wiki: http://trac.tools.ietf.org/group/iab/trac/wiki/IETF-87
- WebRTC-only setup available for remote speakers
 - Asterisk+Opus mixing audio at 48kHz
 - Open source MCU switching video feeds
 - http://lynckia.com/
- Have something to say?
 - Raise your hand! (well, maybe later)

Outline

- Remote Participation Experiment
- Overview of Opus (Jean-Marc Valin)
- Testing
- CODEC WG History and Lessons Learned
- Future work
- Opus deployment panel

What is Opus?

- Audio codec designed for interactive
 Internet application
- Published as RFC 6716 in Sept 2012
- Works for most audio applications
- Adopted as MTI codec for WebRTC

Why a New Audio Codec?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.) 14?! RIDICULOUS!

SITUATION: THERE ARE 14 COMPETING STANDARDS. 14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

SITUATION: THERE ARE 15 COMPETING STANDARDS.

http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png

Why a New Audio Codec?

- No pre-existing audio codec that would:
 - Provide good audio quality over the Internet
 - Be published as a standard
 - Be freely implementable

Two types of audio codecs

Speech codecs	Audio codecs
Voice communication	Music streaming/storage
Low delay	High delay
Narrowband-Wideband	Fullband
"Toll quality"	High Quality
G.729, AMR, Speex	MP3, AAC, Vorbis

• We want (and can now afford) the best of both worlds

Applications and Standards (2010)

Application	Codec
VoIP with PSTN	AMR-NB
Wideband VoIP/videoconference	AMR-WB
High-quality videoconference	G.719
Low-bitrate music streaming	HE-AAC
High-quality music streaming	AAC-LC
Low-delay broadcast	AAC-ELD
Network music performance	

Applications and Standards (2013)

Application	Codec
VoIP with PSTN	Opus
Wideband VoIP/videoconference	Opus
High-quality videoconference	Opus
Low-bitrate music streaming	Opus
High-quality music streaming	Opus
Low-delay broadcast	Opus
Network music performance	Opus

Specifications

- Highly flexible
 - Bit-rates from 6 kb/s to 510 kb/s
 - Narrowband (8 kHz) to fullband (48 kHz)
 - Frame sizes from 2.5 ms to 60 ms
 - Speech and music support
 - Mono and stereo
 - Optional forward error correction (FEC)
- All changeable dynamically with in-band signalling

Implementation

- Available for floating-point and fixed-point
- Wide range of supported platforms

 x86, ARM, MIPS, SPARC, VAX, ...
- Arch-specific optimization on x86, ARM
- Quality vs complexity trade-off
- Support for packet-loss concealment (PLC) and discontinuous transmission (DTX)

Optimized for the Internet?

- More than the ability to conceal lost packets
- Wide range of operating conditions (delay, bit-rate, loss) that vary with time
- Transports data in bytes
- RTP payload: the simpler the better

How it Works

- Merge of two technologies
 - SILK: Skype's linear prediction speech codec
 - CELT: Xiph.Org's low-delay transform codec
- Better than the sum of the parts
 - Hybrid mode
 - Mode switching

Adoption

VoIP/videoconference
 WebRTC (Firefox, Chrome)

- Many VoIP clients (Jitsi, Meetecho, CounterPath)
- Games (Mumble, TeamSpeak)
- Players
 - HTML5 (Firefox, Chrome*)
 - Standalone (Rockbox, VLC, Foobar 2k)
- Network music performances
- Streaming (icecast)

Outline

- Remote Participation Experiment
- Overview of Opus
- Testing (Greg Maxwell)
- CODEC WG History and Lessons Learned
- Future work
- Opus deployment panel

Testing Opus

- Opus has a broad scope
 - 64 configurations = 4096 configuration transition pairs
 - At 1275 bitrates (in CBR alone)
- Multiple testing objectives
 - Development testing
 - Quality and bitrate targets: "Better than" Speex, iLBC, G.722.1, G.722.1C (RFC 6366)
- Used both subjective and objective testing

Subjective results

- draft-ietf-codec-results-03
 - Four different testing parties on the final codec
 - Seven more on pre-final bitstreams
- Some highlights:
 - Google tests
 - Speech at multiple rates
 - Main tests included 6 samples, 17 listeners
 - BS.1534-1 "MUSHRA"
 - HydrogenAudio
 - 64kbit/sec stereo music
 - 30 samples, 33 listeners, 531 final measurements
 - BS.1116-1 "ABC/HR"

Google results

Narrowband

Wideband/ Fullband

Why we need more than formal listening tests

- Formal listening tests are expensive, meaning
 - Reduced coverage
 - Infrequent repetition
- Insensitivity
 - "Everything tied!"
 - Even major errors may only rarely be audible
 - Can't detect matched encoder/decoder errors
 - Can't detect underspecified behavior (e.g., "works on my architecture")

Operational Testing

- Deployed to millions of users as part of Mumble, Skype, ...
 - "It sounds good except when there's just bass"
 - "It sounds bad on this file"
 - "Too many consecutive losses sound bad"
 - "If I pass in NaNs things blow up"

Objective Quality Testing

- Run thousands of hours of audio through the codec with many settings
 - Used a 160 core cluster
 - Can run the codec 6400x real time
 - 7 days of computation is 122 years of audio

The Opus spec is executable...

- That lets us test in many different ways:
 - Operational testing
 - Objective quality testing
 - Unit testing (including exhaustive component tests)
 - Range coder mismatch testing
 - Static analysis
 - Instrumentation
 - Line and branch coverage analysis
 - White- and blackbox "fuzz" testing
 - Multiplatform testing
 - Implementation interoperability testing

Outline

- Remote Participation Experiment
- Overview of Opus
- Testing
- CODEC WG History and Lessons Learned (Peter Saint-Andre)
- Future work
- Opus deployment panel

"Storming" (IETF 75, Stockholm)

"Forming" (IETF 76, Hiroshima)

- A much more civilized conversation :-)
- Still skepticism about feasibility
- But a willingness to try
- A sense that even if we failed, we'd learn something interesting

"Norming"

- RFC 6366: Requirements for an Internet Audio Codec (August 2011)
- RFC 6569: Guidelines for Development of an Audio Code within the IETF (March 2012)
- Expectations set about IPR disclosures (cf. RFC 6702) - 13 received, all of them timely

"Performing"

- Melding the two primary contributions (CELT and SILK) went surprisingly well
- Working together on common code gave a sense of shared purpose / enterprise
- However, participants not working on the code might have felt like they were on the outside looking in

Early Sources of Confusion

- One codec or many?
- Developing something new or selecting an existing technology?
- What does it mean to be "optimized for the Internet"?
- What are the preferred IPR terms?

"Those Who Fail to Plan Are Planning to Fail"

- Have a plan for managing liaison relationships
- Have a plan for testing and for using the results to improve the codec
- Have a plan for producing an unencumbered technology

The Joys of Running Code

- Arguments over code efficiency can distract from the main purpose
- What's the relationship between the codec and the signaling plane? (Lesson: use signaling where that would help...)
- Treating source code as normative makes
 typical IETF reviews more difficult

Stumbling Towards Ecstasy

- Did the WG succeed despite itself?
- In part: plenty of room for improvement if we do something similar again
- Critical to have a group of well-informed, passionate contributors with common goal
- Most important, the results are great and Opus sounds wonderful!

Outline

- Remote Participation Experiment
- Overview of Opus
- Testing
- CODEC WG History and Lessons Learned
- Future work (JM Valin & Tim Terriberry)
 - Opus
 - Video
- Opus deployment panel

Specifications

- Defining payloads
 RTP
 - Ogg
 - Matroska
- Minor fixes to RFC 6716

Implementation

- Upcoming libopus 1.1 release
 - Fully compatible with RFC
 - Quality improvements
 - Surround improvements
 - Speech/music detection
 - Optimizations (72% faster decoder on ARM)
 - libopus 1.1-beta demo: http://people.xiph.org/~xiphmont/demo/opus/demo3.shtml

Adoption

- Broadcast
 - Broadcast equipment (Tieline)
 - Digital radio (DRM, DAB)
 - Testing (EBU)
- Internet radio
 - http://dir.xiph.org/by_format/Opus
- Wireless audio
 - Speakers, microphones

Case Study: WebRTC MTI

- Mandatory To Implement (MTI) Audio Codec(s)
 - Concrete proposal (Opus+G.711) raised and decided
 - In a single meeting (IETF-84 in Vancouver)
 - Near-unanimous consensus
- Mandatory To Implement (MTI) Video Codec(s)
 - Debated heavily for over two years
 - Decision postponed at least 2 times (so far)
 - No resolution in sight

Why Was Audio So Much Easier?

- Opus produced by open, multistakeholder standardization effort
 - Including 3 of the 4 major browser vendors
- Royalty-free licensing with clear IPR history
 Specific disclosures => easily evaluated
- And maybe... it wasn't so easy
 - Product of 3 years of vigorous debate
 - But all that time spent making *forward* progress

Doing the same for video

- Xiph.Org Foundation's Daala project
 - https://xiph.org/daala/
 - "Coding Party" in May
 - 169 commits from 14 authors
 - Including "individuals" from Xiph.Org, Mozilla, Cisco, Red Hat, Debian, RDIO, Voicetronix, etc.
 - Demos
 - https://people.xiph.org/~xiphmont/demo/daala/demo1.shtml
 - https://people.xiph.org/~xiphmont/demo/daala/demo2.shtml
- IETF effort
 - Bof @ IETF-85
 - List: video-codec@ietf.org
 - Drafts: draft-terriberry-codingtools, draft-egge-videocodec-tdlt, draft-valin-videocodec-pvq, draft-terriberry-ipr-license

Opus Deployment Panel

Timothy B. Terriberry, Mozilla/Xiph.Org Foundation: Opus in Firefox (and other places)
Justin Uberti, Google: Opus Deployment at Google
Emil Ivov, Jitsi: Audio codecs in Jitsi
Lorenzo Miniero, MeetEcho: Opus Integration in Asterisk

Opus in Firefox

- <audio> tag support in Firefox 15 (Aug. 2012)
 - Firefox 17 (Nov. 2012): Multichannel support
 - Firefox 18 (Jan. 2013): Metadata API
 - Firefox 20 (Apr. 2013): Chained streams
- WebRTC support in Firefox 22 (Jun. 2013)
 - In project branch since Aug. 2012
 - Currently mono-only (limitation of capture, AEC)
- MediaRecorder API in Firefox 25 (Oct. 2013)
 - https://bugzilla.mozilla.org/show_bug.cgi?id=896935
- Music App support in Firefox OS 1.1 (release TBD)

Opus in other places

- VLC 2.0.4 (Oct. 2012, thanks to Greg Maxwell)
 - Album art support in 2.1.0 (forthcoming)
- libopusfile
 - Simple decode/playback library
 - Handles seeking, metadata, multichannel, chaining
 - Pluggable I/O backends (FILE, memory, http[s])
 - In Debian testing, Fedora 18, FreeBSD, homebrew, etc.
 - Used by: xmms2, qmmp, cmus, taglib, sox, ioquake, more...

Chrome: Initial Work

- OPUS is a very general codec with a wide range of parameters and tools.
- Integrator needs to think through which configurations it wants to support.
- Had to also solve a few integration complexities in Chrome:
 - Determination of default params
 - 48K sampling rate
 - Integration with Chrome NetEQ

Chrome Timeline

- May 2012
 Initial sketches on integration
- September 2012
 Integration started
- October 2012

Working implementation

• November 2012

License concerns resolved

• **December 2012** (Chrome 25) Opus fully enabled in WebRTC

Chrome Timeline (cont'd)

• February 2013

Chrome-Firefox interop demo with Opus

- March 2013 (Chrome 27)
 Opus becomes the default codec in WebRTC
- July 2013

Opus + WebRTC used for remote participation at IETF

Chrome: Current Day

Continuing to test and improve:

- Use of Opus as default pointed out superwideband issues in Chrome echo canceller
- Complexity on mobile CPUs needs tuning
- Proper FEC at all bitrates is not trivial

audio codecs in Jitsi

history evolution goals dilemmas

then Opus happened

« totally open, royalty-free, highly versatile audio codec »

things we love in Opus

quality, usability, stereo, fullband, packet loss concealment (plc), forrward error correction (fec), surround, variable bit-rate ... or not, music audio detect, manually controllable bitrate,

born at the IETF

Integrating Opus (1)

- First step was to provide lightweight integration
 - Opus encoded HTML5 stream
 - Available since IETF85 in Atlanta
- Open source setup
 - Asterisk providing mixed audio signals...
 - ... opusenc encodes the audio...
 - ... oggfwd forwards it to the streamer...
 - ... Icecast does HTML5 streaming

Passive Audio/Video (streaming) integrated in the browser by means of HTML5

- HTML5-based Audio-only stream (Opus):
 - Please beware that this stream has about 10 seconds of delay.
 - HTML5: Audio only

Integrating Opus (2)

- Next step was integration in the core itself
 - Additional codec in conference bridge
 - Available since IETF86 in Orlando
- Open source implementation
 - New Opus codec module implemented for Asterisk 11
 - More on this in a minute...
- Made available for WebRTC remote attendees
 - Chrome (IETF86) and Firefox (IETF87)
 - Other endpoints not modified, all interoperable
 - Standards are nice!

Asterisk integration

- Asterisk integration made available as open source
- Transcoding support for Asterisk 11
 - https://github.com/meetecho/asterisk-opus
 - Opus (transcoding) and VP8 (passthrough)
 - Automatically caps Opus to peer capabilities
 - e.g., Opus capped at 8kHz if talking to G.711
 - Needs work, but good feedback so far
- Passthrough support for (upcoming) Asterisk 12
 - https://issues.asterisk.org/jira/browse/ASTERISK-21981
 - Opus and VP8 (passthrough only)
 - Working with Asterisk community on this

Open Mike

