IEEE 802.1Q Congestion Notification Overview

Patricia Thaler

Broadcom

IETF 87 Berlin, Germany, July 2013

Congestion Notification (CN) Purpose

- Provide a means for a bridge to notify a source of congestion causing the source to reduce the flow rate.
- Motivated in part by I/O consolidation onto data center networks
 - Moving protocols from specialized networks with link flow control to Ethernet, e.g. FCoE and RoCE
 - Provide a way to mitigate congestion spreading from link flow control such as Priority-based Flow Control

Congestion Notification (CN)

- Provide a means for a bridge to notify a source of congestion causing the source to reduce the flow rate.
- CN is targeted at
 - Networks with low bandwidth delay products: e.g. data center
 - Long lived data flows
- Operates on frames in a VLAN priority
 - Allows for sharing the network between congestion controlled and non-controlled traffic.
- Goals: avoid frame loss; reduce latency; improve performance
- Originally IEEE Std 802.1Qau; now incorporated into IEEE 802.1Q-2011

BROADCO

Selected Objectives

BROADCOM.

- Independent of upper layer protocol
- Coexist with TCP
 - (i.e. nested control loops of CN and TCP flow control produce reasonable behavior)
- Unicast traffic
- Support bandwidth delay product of 5 Mbit
- Operates over a domain where all bridges and end stations support CN
- No per flow state or per flow queuing in bridges

CN uses BCN messages

- BROADCOM
- Bridge detects congestion when queue is above equilibrium level
- Generates Congestion Notification Message (CNM) to

Identifying flows

BROADCOM.

- Source may tag frames with a CN-Tag
 - Contains a 2 byte Flow ID
 - Flow ID meaning is local to source
 - Flow ID is returned in the CNM
- Allows source to identify the flow to apply the rate limit

Congestion Notification Message (CNM) Content

- Version, 4 bit
- Quantized Feedback, 6 bits, a function of cnmQoffset and cnmQDelta
- Congestion Point Identifier (CPID)* 8 byte
- cnmQoffset*, units of 64 bytes 2 byte
- cnmQDelta*, units of 64 bytes 2 byte
- Encapsulated priority (i.e. priority of the sampled frame), 3 bit
- Encapsulated destination MAC address (DA of sampled frame), 6 byte
- Encapsulated MSDU length, 2 byte max value 64
- Encapsulated MSDU, up to 64 bytes

* Not used by reaction point algorithm – CPID can be used to identify the congestion location.

CNM transmission

- CNMs normally transmitted in a higher priority to reduce reaction time
- Encapsulated MSDU can be used to forward CNMs produced by a bridge that receives tunneled frames
 - E.g. in an IEEE 802.1 Provider Backbone Bridged Network frames are encapsulated with an outer address that identifies the PBB edge bridges, not frame source and destination. (IEEE 802.1Q 32.16)
 - A bridge in the PBBN will send the CNM to the edge bridge DA
 - The PBB edge bridge
 - Removes the inner source address, destination address, VLAN Tag and CN-Tag, if present, from the encapsulated MSDU field,
 - Places DA in the Flow ID in encapsulated destination MAC address field
 - Adds the CN-Tag and VLAN Tag to the frame
 - Sends the frame to the inner source address

QCN: Algorithm Overview and Its Basic Benchmark Simulation

Rong Pan

IETF 87 Berlin, Germany July, 2013

Ethernet Congestion Control for Data Center Network

QCN (A Brief Review) - Congestion Point

How To Sample & Mark A Packet?

QCN (A Brief Review)

- Reaction Point

Two counters: byte-counter and timer cycle through independently Both reset by Fb < 0 signal

- Byte-Counter
 - Fb < 0 resets byte-counter
 - Stage counter is incremented whenever a certain amount of data is accumulated
- Timer
 - Fb < 0 resets timer
 - Stage counter is incremented whenever a certain amount of time has passed
- Rate Limter (RL)
 - Depending the states of Byte-Counter's and Timer's stage counters to decide rate adjustment actions

Byte Counter

▲

Timer

Rate Limiter State Diagram

Rate Changes - Upon a Fb < 0 message

- Target Rate (TR) is decreased implicitly
 - TR = Current Rate (CR)
- Current Rate (CR) is multiplicatively decreased
 - CR = CR * (1 Gd*|Fb|)

Rate Changes - Upon byte_counter or timer expires

Fast Recovery
 TR = CR
 CR = (CR+TR)/2

2) Additive Increase -TR = TR+R_AI; CR = (CR+TR)/2

3) Hyper Additive Increase (event numbered i = 1, 2, ...)
At the end of event number i: TR = TR + (i*R_HAI); CR = (CR+TR)/2

Baseline #1

Scenarios: 2Gbps, 1Gbps, 0.5Gbps OG service rates

Simulation Parameters

- Traffic
 - i.i.d. Bernoulli arrivals
 - Uniform destination distribution (to all nodes except self)
 - Fixed frame size = 1500 B
- Switch
 - VOQ with 2.4MB shared mem
 - Partitioned memory per input, shared among all outputs
 - No limit on per-output memory usage
- Adapter
 - RLT: VOQ and single; RR service
 - One rate limiter per destination
 - Egress buffer size = 1500 KB,
 - Ingress buffer size = Unlimited

- QCN
 - W = 2.0
 - Q_EQ = 33 KB
 - GD = 0.0078125
 - Base marking: once every 150 KB
 - Margin of randomness: 30%
 - R_{unit} = 1 Mb/s
 - MIN_RATE = 10 Mb/s
 - BC_LIMIT = 150 KB
 - TIMER_PERIOD = 15 ms
 - R_AI = 5 Mbps
 - R_HAI = 50Mbps
 - FAST_RECOVERY_TH = 5
 - Quantized_Fb: 6 bits

Service Rate: 2.0Gbps - Queue Size

Service Rate: 2.0Gbps - Throughput

Baseline #2

2. Multi-Hop Single HS Large Network

Link Throughput - The Congested Link (n = 4)

- Congested Queue Size (n = 4)

17

Summary

- QCN is a congestion control mechanism for data center Ethernet
- Congestion points send negative feedback signals
- Reaction point responds to congestion signals by cutting its rate, lack of such signals would trigger reaction point to increase its rate
 - fast recovery, additive increase and hyper additive increase.