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Motivation	
•  Extending layer 4 functionality addresses a lot of 

problems	

–  Increased performance	


•  MPTCP,  WindowScale, FastOpen, TLP, PRR	


–  Ubiquitous encryption	

•  TcpCrypt	


Is it really possible to deploy layer 4 
extensions?	

•  Networks still accommodate TCP extensions	

–  86 % of the paths are usable for well-designed TCP extensions	


	




Protocol stacks in end systems	

•  OSes implement stacks	

–  high performance	


–  Isolation between applications	

–  Socket APIs	


•  New OS versions adopt new protocols/extensions	




Extending protocol stacks: reality	

•  OSes’ release cycle is slow	

•  Support in the newest OS version does not imply 

deployment	

–  Stakeholders are reluctant to upgrade their OS	


–  Disabling a new feature by default also hinders timely 
deployment	




How long does deployment take?	

–  SACK is default since Windows 2000	


–  WS and TS are implemented in Windows 2000, but enabled 
as default since Windows Vista	
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•  To ease upgrade, we need to move protocol 
stacks up into user-space	


•  Problem: We don’t have a practical way	

–  Isolation between applications	


–  Support for legacy applications and OS’s stack	

–  High performance	




MultiStack: operating system support 
for user-space stacks	

	


•  Support for multiple stacks (including OS’s stack)	

•  Namespace isolation based on traditional 3-tuple	

•  Very high performance	

•  Run in FreeBSD and Linux	
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Multistack performance	
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•  App creates every packet from 
scratch, and send it to the 
kernel	


•  Multistack validates the source 
3-tuple of every packet, and 
copies the packet to the NIC’s 
TX buffer	


•  Multistack receives a packet	

•  It identifies destination 3-tuple 

of the packet	


•  It delivers the packet to the 
corresponding app/stack	



Performance with stacks	

•  A simple HTTP server on top of our work-in-progress 
user-space TCP (UTCP)	


•  The same app running on top of OS’s TCP	
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Conclusion	

•  Rekindle user-space stacks for widespread, timely 
deployment of new protocols/extensions	


•  Ongoing work:	

–  Improving implementation of MultiStack	


–  Making complete user-space TCP implementation	

–  Integrating user-space stacks into networking library like 

libevent and libuv	



Multistack performance (many apps/
stacks)	

•  A bit lower performance on many 
ports is due to the reduced 
number of packets taken in a 
single systemcall	
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