
Why protocol stacks should be
in user-space?	

Michio Honda (NEC Europe), 	

Joao Taveira Araujo (UCL),	

Luigi Rizzo (Universitea de Pisa),	

Costin Raiciu (Universitea Buchalest)	

Felipe Huici (NEC Europe)	

	

IETF87 MPTCP WG July 30, 2013 Berlin 	

Motivation	
•  Extending layer 4 functionality addresses a lot of

problems	

–  Increased performance	

•  MPTCP, WindowScale, FastOpen, TLP, PRR	

–  Ubiquitous encryption	

•  TcpCrypt	

Is it really possible to deploy layer 4
extensions?	

•  Networks still accommodate TCP extensions	

–  86 % of the paths are usable for well-designed TCP extensions	

	

Protocol stacks in end systems	

•  OSes implement stacks	

–  high performance	

–  Isolation between applications	

–  Socket APIs	

•  New OS versions adopt new protocols/extensions	

Extending protocol stacks: reality	

•  OSes’ release cycle is slow	

•  Support in the newest OS version does not imply

deployment	

–  Stakeholders are reluctant to upgrade their OS	

–  Disabling a new feature by default also hinders timely
deployment	

How long does deployment take?	

–  SACK is default since Windows 2000	

–  WS and TS are implemented in Windows 2000, but enabled
as default since Windows Vista	

0.00

0.25

0.50

0.75

1.00

2007 2008 2009 2010 2011 2012
Date

R
at

io
 o

f f
lo

w
s

Option
SACK
Timestamp
Windowscale

Direction
Inbound
Outbound

*	 Analyzed	 in	 traffic	 traces	
monitored	 at	 a	 single	 transit	
link	 in	 Japan	 (MAWI	 traces)	

 	

•  To ease upgrade, we need to move protocol
stacks up into user-space	

•  Problem: We don’t have a practical way	

–  Isolation between applications	

–  Support for legacy applications and OS’s stack	

–  High performance	

MultiStack: operating system support
for user-space stacks	

	

•  Support for multiple stacks (including OS’s stack)	

•  Namespace isolation based on traditional 3-tuple	

•  Very high performance	

•  Run in FreeBSD and Linux	

App 1
Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets (3-tuple)

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N
Stack N

Socket API
. . .

. . .

(TCP port 80) (UDP port 53)
(TCP port 22)

MultiStack: operating system support
for user-space stacks	

	

•  Support for multiple stacks (including OS’s stack)	

•  Namespace isolation based on traditional 3-tuple	

•  Very high performance	

•  Run in FreeBSD and Linux	

App 1
Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets (3-tuple)

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N
Stack N

Socket API
. . .

. . .

(TCP port 80) (UDP port 53)
(TCP port 22)

MultiStack: operating system support
for user-space stacks	

	

•  Support for multiple stacks (including OS’s stack)	

•  Namespace isolation based on traditional 3-tuple	

•  Very high performance	

•  Run in FreeBSD and Linux	

App 1
Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets (3-tuple)

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N
Stack N

Socket API
. . .

. . .

(TCP port 80) (UDP port 53)
(TCP port 22)

MultiStack: operating system support
for user-space stacks	

	

•  Support for multiple stacks (including OS’s stack)	

•  Namespace isolation based on traditional 3-tuple	

•  Very high performance	

•  Run in FreeBSD and Linux	

App 1
Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets (3-tuple)

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N
Stack N

Socket API
. . .

. . .

(TCP port 80) (UDP port 53)
(TCP port 22)

Multistack performance	

 0
 2
 4
 6
 8

 10

64 128 256 512T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet size (bytes)

1 core
2 cores
4 cores

Line rate
 0
 2
 4
 6
 8

 10

64 128 256 512T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

1 core
2 cores
4 cores

Line rate

TX	 RX	

•  App creates every packet from
scratch, and send it to the
kernel	

•  Multistack validates the source
3-tuple of every packet, and
copies the packet to the NIC’s
TX buffer	

•  Multistack receives a packet	

•  It identifies destination 3-tuple

of the packet	

•  It delivers the packet to the
corresponding app/stack	

Performance with stacks	

•  A simple HTTP server on top of our work-in-progress
user-space TCP (UTCP)	

•  The same app running on top of OS’s TCP	

 0

 2

 4

 6

 8

 10

1 8 16 32

G
b

p
s

Fetch size (KB)

nginx-TSO
OSTCP

OSTCP-TSO
UTCP

Client establishes a
TCP connection, and
sends HTTP GET	

Server replies with
HTTP OK (1- 32KB)	

Single TCP connection
is used for a single
HTTP transaction	

Conclusion	

•  Rekindle user-space stacks for widespread, timely
deployment of new protocols/extensions	

•  Ongoing work:	

–  Improving implementation of MultiStack	

–  Making complete user-space TCP implementation	

–  Integrating user-space stacks into networking library like

libevent and libuv	

Multistack performance (many apps/
stacks)	

•  A bit lower performance on many
ports is due to the reduced
number of packets taken in a
single systemcall	

TX	 RX	

 0
 2
 4
 6
 8

 10

64 128 256 512T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

8 ports
16 ports
64 ports

Line rate
 0
 2
 4
 6
 8

 10

64 128 256 512T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet size (bytes)

8 ports
16 ports
64 ports

Line rate

