DNS Cache-Poisoning: New Vulnerabilities and Implications, or: DNSSEC, the time has come!

Amir Herzberg and Haya Shulman Dept. of Computer Science Bar Ilan University

About us

Bar Ilan University NetSec group

Haya Shulman:

Fresh Graduate PhD Thesis: DNS Security (and more...) Amir Herzberg:

NetSec/Crypto Researcher Attacks: DNS, TCP/IP, DoS, ... 2013... DNSSEC, IPSEC:15yrs old Yet: < 6% of traffic encrypted,...
➔ Insecure against MitM attacker
WHY???

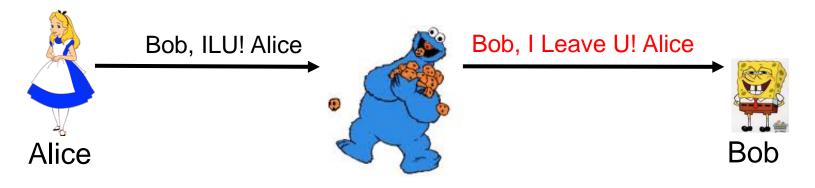
False hope: attackers are `off-path`

Can send spoofed packets but not intercept

Reality: MitM attackers are common

Open WiFi, route hijacking, mal-devices, DNS poisoning

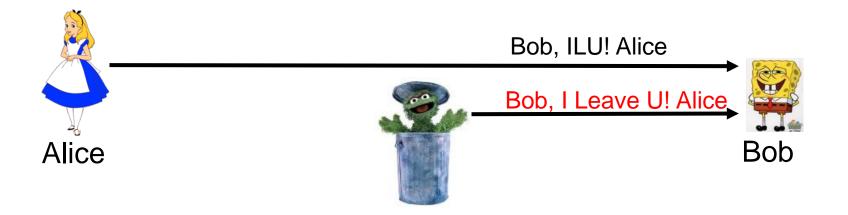
False belief: DNS, TCP immune to off-path attacks


Reality: TCP hijacking, DNS poisoning

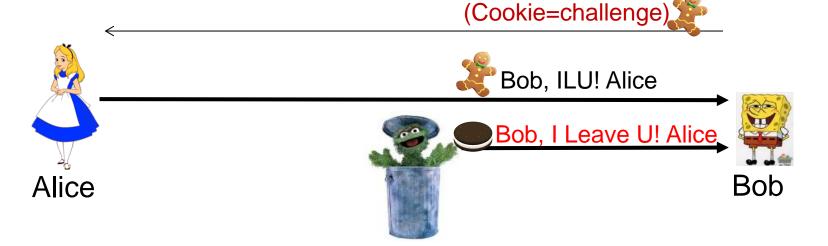
Outline

- Attack model: MitM vs. Off-path
- DNS poisoning: Background
- Source-port de-randomization attacks
 - Resolver-behind-NAT, proxy-using-upstream
- 1st-fragment piggybacking attacks
- Implications and defenses
 - Patches: to resolvers, name-servers, registrars
 - Deploy DNSSEC correctly... [and fix it, too??]

Attacker Model: MitM or Off-Path?


- Man-in-the-Middle attacker
 - On path
 - Harder but possible: wifi, route hijack, vulnerable router, ...
 - Or: give wrong address **DNS poisoning**
 - Prevent with crypto: overhead, complexity, PKI ...
 - Why bother?

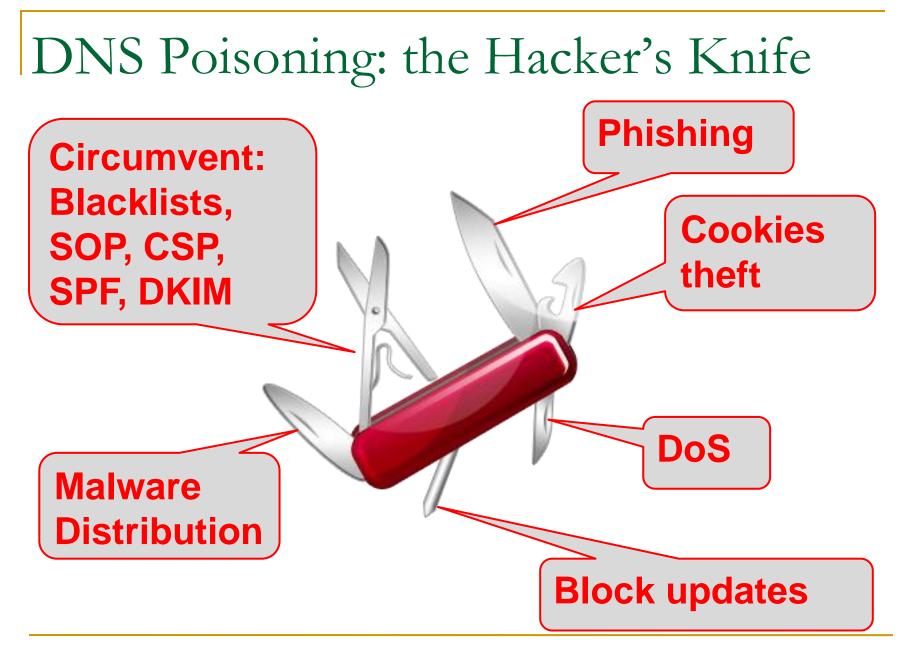
Herzberg and Shulman: DNSSEC, the time has come!


Attacker Model: MitM or Off-Path?

- Folklore: most attackers are weak, off-path
- `Security' is often against Off-Path Oscar
 - Do not control devices en-route
 - Cannot intercept/modify/block traffic
 - Prevent: with challenge-response ('cookie')

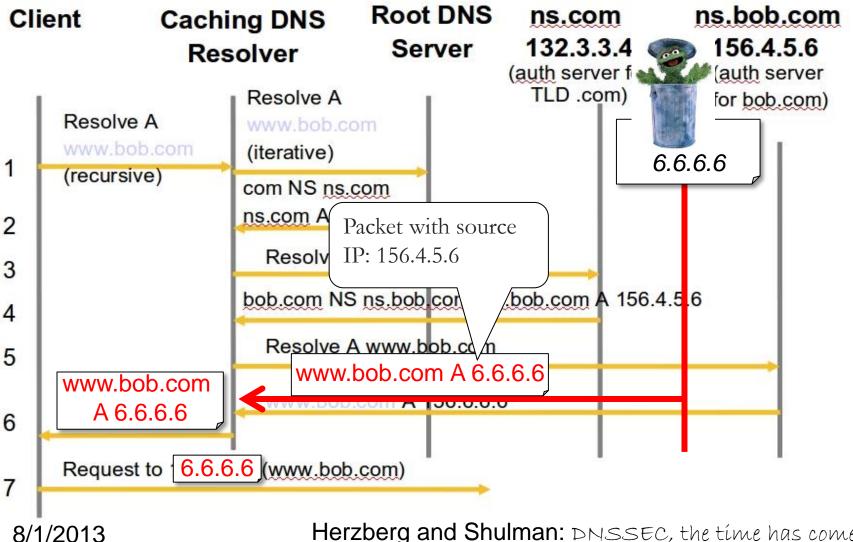
Attacker Model: MitM or Off-Path?

- Folklore: most attackers are weak, off-path
- `Security' is often against Off-Path Oscar
 - Do not control devices en-route
 - Cannot intercept/modify/block traffic
 - Prevent: with challenge-response (`cookie`)

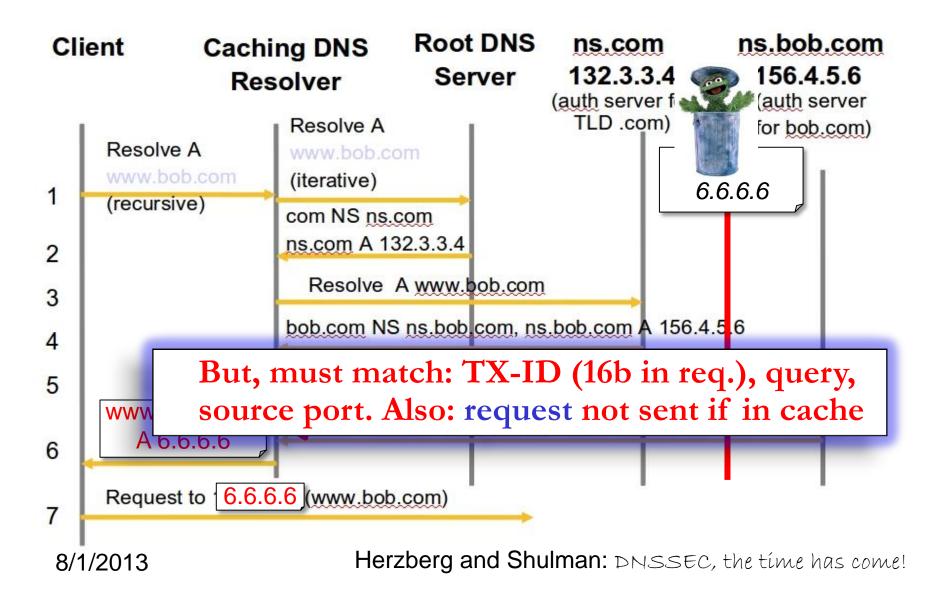


Challenge-Response: What Can Go Wrong?

- Attacker has MitM capabilities
- Insufficient entropy: too short or non-uniform
 - TCP [Zalewski01, Watson04]
 - DNS [Klein03, Kaminsky08]
- Side-channel: reused field (source port)
 - DNS [HS12, HS13], TCP [GH12, GH13, QM(X)12]
- Cut-&-paste: use real cookie in spoofed packet
 - DNS [HS13]


Outline

- Attack model: MitM vs. Off-path
- DNS poisoning: Background
- Source-port de-randomization attacks
 - Resolver-behind-NAT, proxy-using-upstream
- 1st-fragment piggybacking attacks
- Implications and defenses
 - Patches: to resolvers, name-servers, registrars
 - Deploy DNSSEC correctly... [and fix it, too??]


Herzberg and Shulman: DNSSEC, the time has come!

DNS Cache Poisoning

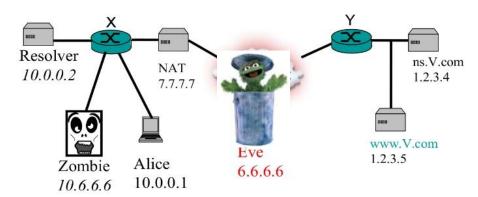
Herzberg and Shulman: DNSSEC, the time has come!

DNS Cache Poisoning

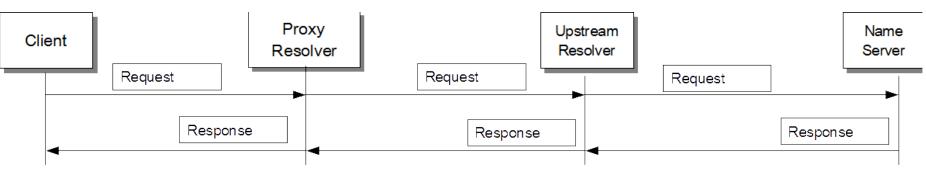
Defenses against DNS Poisoning

- **Currently**, mostly Challenge-response defenses:
 - Unilateral (in resolver): `challenges' using existing request fields echoed in responses
 - TX-ID (16b), Source port (16b), Query [0x20]
 - Cryptographic defenses (DNSSEC): limited use
 - Root and many TLDs signed
 - Many resolvers request signatures, but few validate
 - Why? Myths (rare MitM, weak Oscar)

Outline

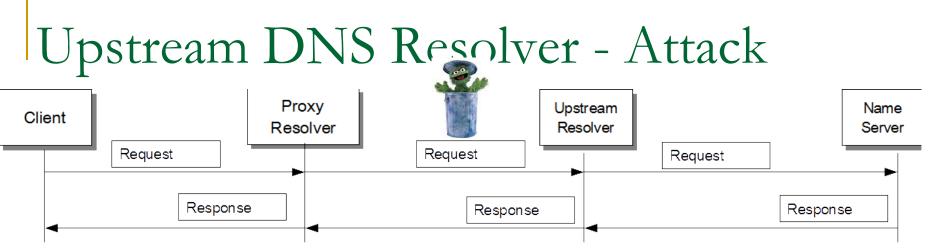

- Attack model: MitM vs. Off-path
- DNS poisoning: Background
- Source-port de-randomization attacks
 - Resolver-behind-NAT, proxy-using-upstream
- 1st-fragment piggybacking attacks
- Implications and defenses
 - Patches: to resolvers, name-servers, registrars
 - Deploy DNSSEC correctly... [and fix it, too??]

Source Port De-Randomisation Attacks


- Learn source-port via side channel
- Attacks on two common configurations:
 - Resolver-behind-NAT [Esorics'12]
 - Attacks for most types of NATs (only one was secure)
 - Upstream resolver (e.g., OpenDNS) [Esorics'13]
 - Learn resolver's IP address, too [often enough for DoS !]

Resolver-behind-NAT: Attack

- Example: attack on **per-dest incrementing** (e.g., Linux)
- Initial port is random; can attacker predict/trap port?
- Attack phases:
 - Hole-punch the NAT
 - Exploit assigned mapping to guess port
- Variations apply to different NAT devices



Upstream DNS Resolver

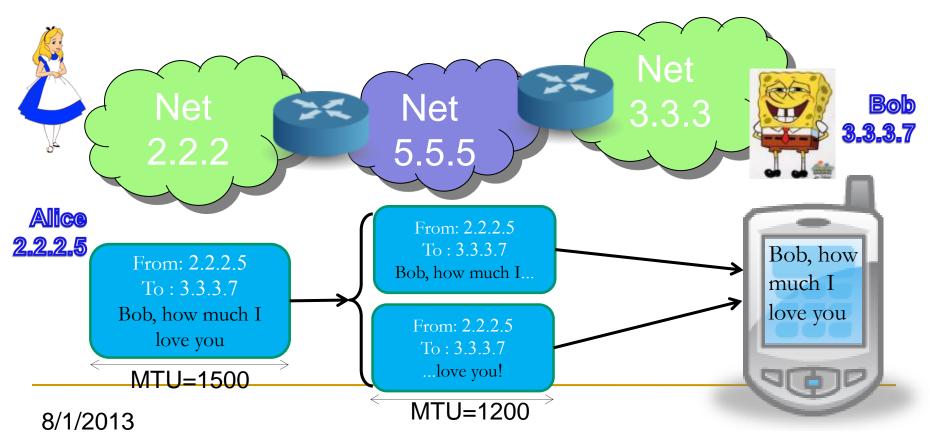
- Upstream DNS resolvers:
- Popular: Google's public-DNS, OpenDNS, many others
- Recommended by experts, vendors
 - E.g., Akamai: 'Customer's primary DNS are not directly exposed to end users, so the risk of cache poisoning and DoS attacks is mitigated'...
- Proxy resolvers often has lower bandwidth, weaker security
 - We found (CAIDA): 54% incrementing ports, 30% fixed port
 - And... both types are vulnerable!

Herzberg and Shulman: DNSSEC, the time has come!

- Poisoning attack in three phases
- Phase 1: find proxy's IP address
 - Many requests with fragmented response... `kill` with spoofed frag
 - Suffices for DoS attack on proxy!
- Phase 2: find fixed/current port #
 - By a more complex frag attack, or by `port overloading'
- Phase 3: `regular' (`Kaminsky') poisoning

Outline

- Attack model: MitM vs. Off-path
- DNS poisoning: Background
- Source-port de-randomization attacks
 - Resolver-behind-NAT, proxy-using-upstream
- 1st-fragment piggybacking attacks
- Implications and defenses
 - Patches: to resolvers, name-servers, registrars
 - Deploy DNSSEC correctly... [and fix it, too??]


1st-fragment piggybacking attacks

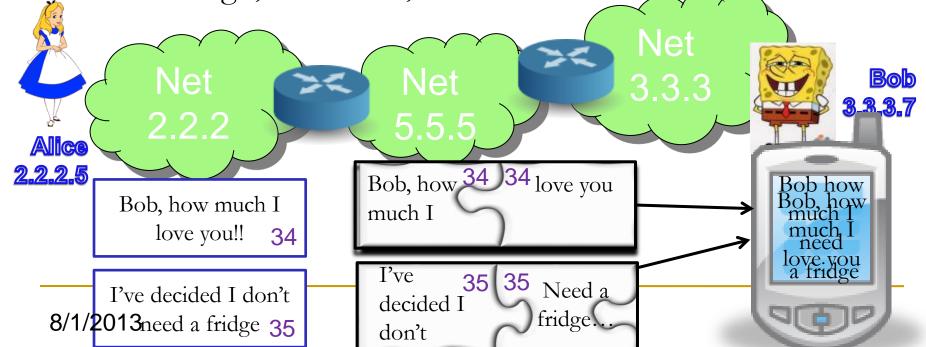
- Cut'n'Paste attack:
- Poison a long, fragmented DNS response
 - Source fragmentation will do [works even for IPv6]
- All `challenges' are in the first fragment!
 - TXID, "src" port, even query [e.g., 0x20 defense]
- Replace 2nd fragment with a fake one!
- Few details and quick recap on IP fragmentation

IP Fragmentation Nets have a limit on maximal packet size

If the packet is larger than the limit: fragmentation

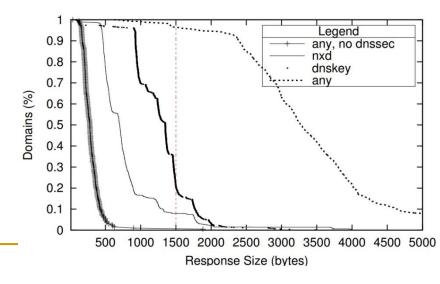
Reassemble at the receiver

Fragment Reassembly

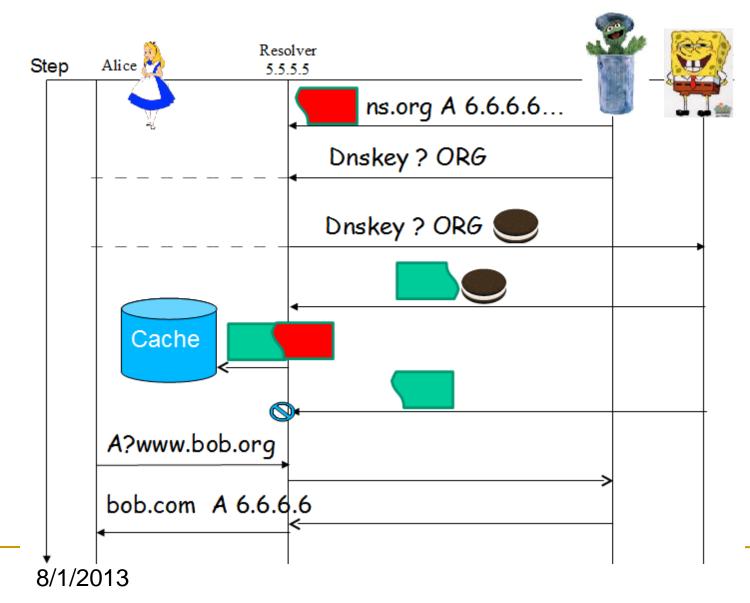

Bob receives fragments of a packet

How to reassemble without introducing mistakes

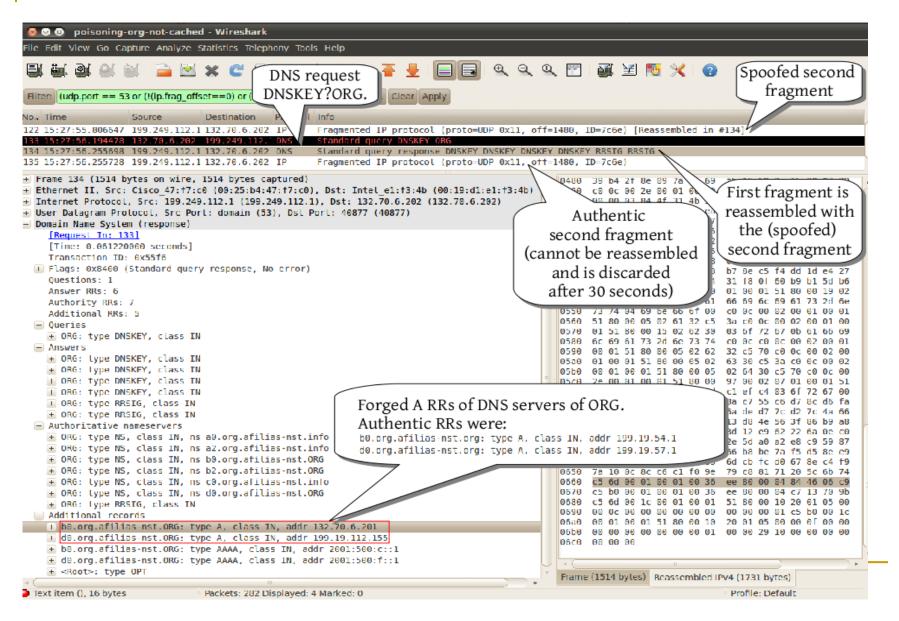
Identify fragments of the same packet


By sender/receiver addresses and protocol (TCP/UDP)

Not enough, add 16 bit, IP-ID


Off-Path Discarding and Modifying

- We show off-path can discard and modify fragments!!
 - Exploit fragmentation for poisoning!
- In reality fragmentation is rare (<1%)
- But, off-path attacker can **cause** fragmentation!!
 - <u>Two</u>methods:
 - 1. Trigger requests whose responses fragment
 - E.g., DNSSEC protected
 - 2. Attacker registered domain



8/1/2013

Modify Long DNSSEC Responses

Poisoning DNSKEY Response

Causing Long, Fragmented Responses

- Often, attacker doesn't need to find a long response
- Attacker causes a long, fragmented response
 - From a victim NS of a TLD (.ORG, .CO.UK, ...)
 - By **registering** an `appropriate' subdomain
- To cause fragmentation:
 - Register many name servers
 - With long names
- Example? One-Domain-to-Rule-them-All . ORG
 - Or see paper [CNS2013]... or next foil ③

88423 199.249.120.1 IPv4 480 Fragmented IP protocol (proto=UDP 0x11, off=1480, ID=	b063) [Rea	assembled	in #207715]
207714 132.70.6.119 DNS 102 Standard query NS one-domain-to-rule-them-all.org			6 (1)
207715 199.249.120.1 DNS 1514 Standard query response		-	Spoofed
	NS query so		second
and admitte to rate them accord, the upt cross ref in respectation and fair	by resolver		6T fragment
, ALE AMERICAL COLLER ALL'ALL ALL'ALL'ALL'ALL'ALL'ALL'ALL'ALL	19110-100	Authentic	second 121
▶ one-domain-to-rule-them-all.org: type NS, class IN, ns sns-pb.isc.org		ragment (d	liscarded 6f
▶ one-domain-to-rule-them-all.org: type N5, class IN, ns pdns3.ultradns.org	S240923-0-9-5	after tin	
▶ h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org: type NSEC3, class IN fragment reas		ad C4 72	
▶ h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org: type RRSIG, class IN with spoofed	second	8f 85 9f	7f cb 7a b8
▶ o64vmqp2rn5ef3aou4q3hruir3ijhis4.org: type NSEC3, class IN fragme			29 a9 08 9f
▶ o64vmqp2rn5ef3aou4g3hruir3ijhis4.org: type RRSIG, class IN			22 4e 13 ca
▼ Additional records	0630 0640	TO DE SIEN	84 46 06 c8 84 46 06 c8
a34353.123456789101112131415161718192021222324252627282930313233343536.123456789.one-do	ma	25 01 264	84 46 06 c9
b34353.123456789101112131415161718192021222324252627282930313233343536.123456789.one-do	222 B 222 C	23/22/22/24	84 46 06 ca
b34353.123456789101112131415161718192021222324252627282930313233343536.123456789.one-do	ma 0670	80 00 04	84 46 06 f4
b34353.123456789101112131415161718192021222324252627282930313233343536.123456789.one-do	alla sees	S. S	84 46 06 ca
b34353.123456789101112131415161718192021222324252627282930313233343536.123456789.one-do	ma		84 46 06 ca
a23456789101112131415161718192021222324252627282930313233343536.a234567891011121.one-do	ma		84 46 06 f4 84 46 06 f4
c23456789101112131415161718192021222324252627282930313233343536.c234567891011121.one-do	0000	22 02 234	84 46 66 ca
d23456789101112131415161718192021222324252627282930313233343536.d234567891011121.one-do	0000	02 07 03	84 46 06 f4
e23456789101112131415161718192021222324252627282930313233343536.e234567891011121.one-do	1227.2	80 00 04	84 46 06 77
f23456789101112131415161718192021222324252627282930313233343536.f234567891011121.one-do	0560	80 00 04	84 46 06 f4
g23456789101112131415161718192021222324252627282930313233343536.g234567891011121.one-do	ma 0700		84 46 06 f4
h23456789101112131415161718192021222324252627282930313233343536.h234567891011121.one-do	0/10	80 00 04	84 46 06 f4
▶ i23456789101112131415161718192021222324252627282930313233343536.i234567891011121.one-do	0720	80 00 10	84 46 06 ca 20 01 0d b8
▶ j23456789101112131415161718192021222324252627282930313233343536.j234567891011121.one-do	0150		c2 eb 00 1c
▶ sns-pb.isc.org: type A, class IN addr 132.70.6.244	CO. 10 CO. 10 CO. 10		85 a3 00 42
pdns3.ultradns.org: type A, clas IN, addr 132.70.6.202	0760		00 01 00 01
	0770	00 10 10	00 00 00 00

Outline

- Attack model: MitM vs. Off-path
- DNS poisoning: Background
- Source-port de-randomization attacks
 - Resolver-behind-NAT, proxy-using-upstream
- 1st-fragment piggybacking attacks
- Implications and defenses
 - Patches: to resolvers, name-servers, registrars
 - Deploy DNSSEC correctly... [and fix it, too??]

Still patching after all these years...

- All attacks: real, practical, validated (by others too)
- Resolvers
 - (Smart) pseudo-random port allocation (see paper)
 - Prepend random-length prefix to referral queries
- Name servers:
 - Append random RR
 - Or send random value of EDNS buffer size from NS
 - But...advanced frag attacks may change checksum field see Esorics'13 paper
- Either: small (non-frag) limit on EDNS (use TCP)
- Registrars: Limit length of subdomain responses
 8/1/2013 Herzberg and Shulman: DNSSEC, the time has come!

Or... can we just use SSL/TLS?

- Tempting: forget DNS, just use secure connection!
- Using secure connection **is** a good idea, sure
- But not complete solution:
 - Is web's PKI secure? Hmm...
 - Overhead
 - Unrealistic to expect all web to be fixed
 - Phishing
 - Denial-of-service
 - Non-web applications: **SMTP**, P2P, ... Even **security:** e.g.: blacklists, SPF, DKIM...

DNSSEC, the time has come!

- These patches are too much, too complex, and:
 - Maybe there's another vulnerability/attack?
 - And what about MitM attacker? Like, is BGP secure?
- And... who said they'll suffice??
- We say: time to properly use DNSSEC
- But... some improvements may be needed, too
 - Abolish (insecure) NSEC3 OPT-OUT
 - Add crypto-agility, esp. critical to adopt ECDSA !
 - More... See our paper on this (and/or talk to us ③)

Questions?

Thank you!

Herzberg and Shulman: DNSSEC, the time has come!