THE SALSA20 STREAM CIPHER FOR TRANSPORT LAYER SECURITY

1

S. Josefsson & J. Strombergson& N. MavrogiannopoulosSJDSecworksKU Leuven

Overview

- □ Issues with TLS
- Proposal
- Performance comparison
- Open-questions in the proposal

If the CBC-ciphersuites are implemented by the book/RFC are vulnerable to attacks [0,1]

- If the CBC-ciphersuites are implemented by the book/RFC are vulnerable to attacks [0,1]
- There are known attacks in RC4 that cannot be mitigated [2]

If the CBC-ciphersuites are implemented by the book/RFC are vulnerable to attacks [0,1]
There are known attacks in RC4 that cannot be mitigated [2]

[0]. AlFardan, N., and Paterson, K. "Plaintext-recovery attacks against datagram TLS." In Network and Distributed System Security Symposium (2012).

[1]. AlFardan, Nadhem J., and Kenneth G. Paterson. "Lucky thirteen: Breaking the TLS and DTLS record protocols." IEEE Symposium on Security and Privacy. 2013.

[2]. Isobe, T., Ohigashi, T., Watanabe, Y., and Morii, M., "Full Plaintext Recovery Attack on Broadcast RC4." International Workshop on Fast Software Encryption, 2013.

RC4 cannot be used in Datagram TLS (DTLS)

RC4 cannot be used in Datagram TLS (DTLS) No stream ciphers in DTLS

- That leaves us with few options
 - AES-GCM
 - Very fast on certain CPUs
 - Decent performance otherwise

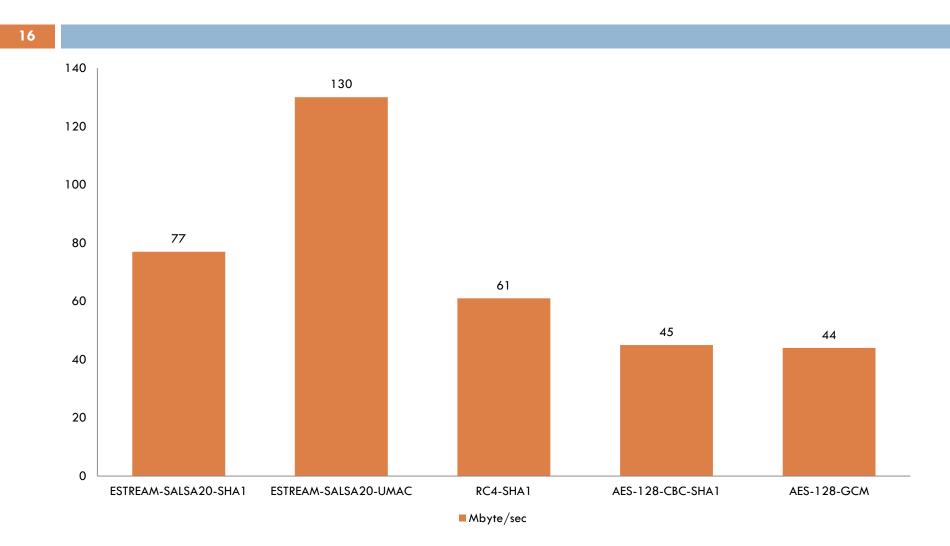
- That leaves us with few options
 - AES-GCM
 - Very fast on certain CPUs
 - Decent performance otherwise
 - AES-CCM
 - Decent performance

- That leaves us with few options
 - AES-GCM
 - Very fast on certain CPUs
 - Decent performance otherwise
 - AES-CCM
 - Decent performance
 - Both are only applicable to TLS 1.2+ or DTLS 1.2+

11

When decent performance isn't enough, a <u>fast</u> and <u>secure</u> stream cipher is needed

We propose to use the eStream [0] results to define a fast stream cipher for TLS/DTLS


[0]. The eSTREAM project was a multi-year effort, running from 2004 to 2008, to promote the design of efficient and compact stream ciphers suitable for widespread adoption. As a result of the project, a portfolio of stream ciphers was announced in April 2008 and revised in 2012.

- We propose to use the eStream [0] results to define a fast stream cipher for TLS/DTLS
 - ESTREAM-SALSA20-HMAC-SHA1
 - SALSA20-HMAC-SHA1

- We propose to use the eStream [0] results to define a fast stream cipher for TLS/DTLS
 - ESTREAM-SALSA20-HMAC-SHA1
 - SALSA20-HMAC-SHA1
- and also utilize a fast MAC algorithm
 - ESTREAM-SALSA20-UMAC
 - SALSA20-UMAC

- We propose to use the eStream [0] results to define a fast stream cipher for TLS/DTLS
 - ESTREAM-SALSA20-HMAC-SHA1
 - SALSA20-HMAC-SHA1
- and also utilize a fast MAC algorithm
 - ESTREAM-SALSA20-UMAC
 - SALSA20-UMAC
- □ UMAC as in RFC4418 (UMAC-AES)

Performance comparison

Packet Overhead

Packet overhead per ciphersuite (in DTLS):

Ciphersuite	Overhead	% of 1500	Expanded
AES-128-CBC-HMAC- SHA1	50-65	3.3-4.3	13 + 20 (MAC) + 16 (IV) + 16 (PAD)
AES-128-GCM	37	2.4	13 + 16 (MAC) + 8 (IV)
SALSA20-256-HMAC- SHA1	33	2.2	13 + 20 (MAC)
SALSA20-256-UMAC96	25	1.6	13 + 12 (MAC)

Packet Overhead

Packet overhead per ciphersuite (in DTLS):

Ciphersuite	Overhead	% of 1500	Expanded	
AES-128-CBC-HMAC- SHA1	50-65	3.3-4.3	13 + 20 (MAC) + 16 (IV) + 16 (PAD)	
AES-128-GCM	37	2.4	13 + 16 (MAC) + 8 (IV)	
SALSA20-256-HMAC- SHA1	33	2.2	13 + 20 (MAC)	the packet – counter is the
SALSA20-256-UMAC96	25	1.6	13 + 12 (MAC)	nonce

Open-questions in proposal

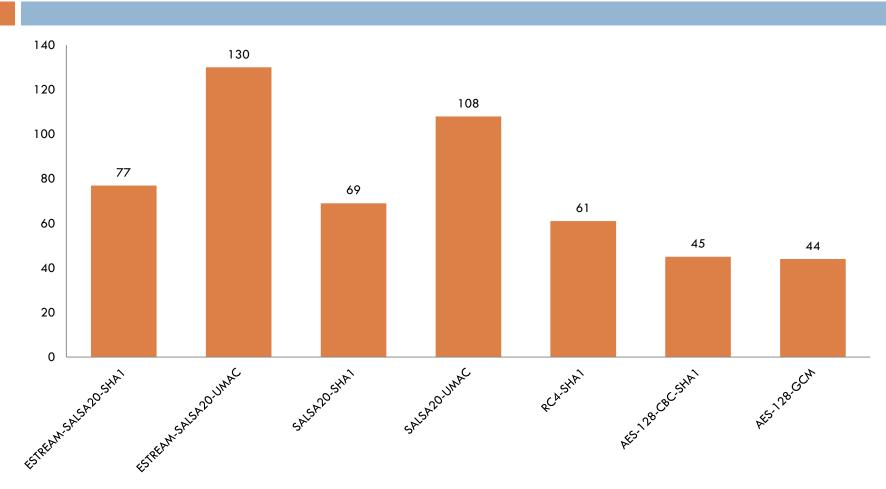
- UMAC can be used
 - As in RFC4418 (UMAC-AES)
 - Or with the combined cipher (i.e., Salsa20)

Open-questions in proposal

- UMAC can be used:
 - As in RFC4418 (UMAC-AES)
 - Or with the combined cipher (i.e., Salsa20)
- Poly1305 is another option for a MAC
 - With comparable speed
 - Proposed in 2005 (UMAC in 1999)
 - No RFC

Conclusion

- □ We can have a replacement of RC4 that is:
 - More secure (one of the winners in eStream competition)
 - Faster
 - 2x-3x the speed of AES ciphersuites
 - 2x the speed of RC4 when combined with UMAC
 - Can be used efficiently with DTLS


Questions and Discussion

Salsa20 cryptanalysis

- Aumasson, Jean-Philippe, et al. "New features of Latin dances: analysis of Salsa, ChaCha, and Rumba." Fast Software Encryption. Springer Berlin Heidelberg, 2008.
- Fischer, Simon, et al. "Non-randomness in eSTREAM Candidates Salsa20 and TSC-4." Progress in Cryptology-INDOCRYPT 2006. Springer Berlin Heidelberg, 2006. 2-16.
- Priemuth-Schmid, Deike, and Alex Biryukov. "Slid pairs in Salsa20 and Trivium." Progress in Cryptology-INDOCRYPT 2008. Springer Berlin Heidelberg, 2008. 1-14.
- Hernandez-Castro, Julio Cesar, Juan ME Tapiador, and Jean-Jacques Quisquater. "On the Salsa20 core function." Fast Software Encryption. Springer Berlin Heidelberg, 2008.
- Crowley, Paul. "Truncated differential cryptanalysis of five rounds of Salsa20." IACR Cryptology ePrint Archive 2005 (2005): 375.
- Shao, Zeng-yu, and Lin Ding. "Related-Cipher Attack on Salsa20." Computational and Information Sciences (ICCIS), 2012 Fourth International Conference on. IEEE, 2012.
- Shi, Zhenqing, et al. "Improved key recovery attacks on reduced-round salsa20 and chacha." Information Security and Cryptology–ICISC 2012. Springer Berlin Heidelberg, 2013. 337-351.
- Tsunoo, Yukiyasu, et al. "Differential cryptanalysis of Salsa20/8." Workshop Record of SASC. 2007.
- Mouha, Nicky, and Bart Preneel. "A Proof that the ARX Cipher Salsa20 is Secure against Differential Cryptanalysis."
- Pelissier, Sylvain. "Cryptanalysis of Reduced Word Variants of Salsa." Western European Workshop on Research in Cryptology, WEWoRC. Vol. 44. 2009."
- Estream portfolio page for Salsa20: http://www.ecrypt.eu.org/stream/e2-salsa20.html

Performance comparison (full)

24

Mbyte/sec