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Encrypted Extensions: [
  Encrypted Extension: { 
    id : Channel ID extension,
    data {
      opaque x[32];
      opaque y[32];
      opaque r[32];
      opaque s[32];
    }
  }
]                              

public key

signature over message hashes



What is it?

● Gives persistent1 cryptographic identifier for 
client.

1can be reset by user.



Why do we need it?

● Lets us build on transport layer security for 
application-level protocols through channel 
binding.
Example: channel-bound cookies (TOFU)
Example: channel-bound login assertions
Example: channel-bound SAML (or OIC, or 
…) assertions

● Detects cookie theft, MITM during login, etc.



Why in TLS?

1. TLS is good at what it does - let’s not 
reinvent the wheel at other layers.
cipher negotiations, session renegotiations (while payloads continue to 
flow!), various attack mitigations, etc.

2. There are:
~3 TLS implementations, but
~100 HTTP implementations, and
~10000000 applications.
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Common Concerns

● ChannelID means that TLS terminators now must get 
involved in application-layer auth (e.g., check cookie-
binding)!

● No! TLS terminators simply add X-CGI-TLS-ChannelID 
header to the HTTP request, the rest is done by 
application backend.

client TLS terminator application server

TLS

Cookie: xyz; Foo: bar Cookie: xyz; Foo: bar
X-TLS-ChannelID: 1234



Common Concerns

● This belongs in the application/HTTP layer!

● Different things belong in different layers:
○ user authentication at the application layer
○ session management at the HTTP layer
○ confidentiality/integrity (creating a “secure channel”) 

at the TLS layer 



Common Concerns

● It’s a layer violation!

● It’s a narrow and well-defined mechanism 
that allows upper layers to benefit from 
transport layer security.



Common Concerns

● Changing TLS means boiling the ocean!

● We boiled it for you: patches to openssl and 
NSS exist.

● Changing 100s of HTTP implementation is 
way more risky.



Common Concerns

● I want to protect my cookies, but I won’t/can’t 
run TLS!

● Go for it! :-)



Common Concerns

● I can’t change my TLS implementation!

● Yes you can.
(Surely you’re patching security holes, 
right?)

● I really can’t.

● It’s ok to just change the latest version - this 
change is backwards-compatible.



Implementation Status

● Implemented in Chrome & Google’s server 
fleet.
○ 2nd generation implementation (after OBC)

● Open-source patches exist for openssl, NSS
○ AOSP has picked up openssl patch
○ openssl main branch waiting for standardization

● No performance issues in server, client
○ contrast with older OBC implementation

● Some false positives
○ browser bugs
○ enterprise “proxies” and client fallbacks



Desired Result

● Adoption as WG Item for Standards-Track 
RFC



Open Questions

● Uses EncryptedExtensions
○ draft-agl-tls-nextprotoneg

● Cipher negotiations vs. extension versioning


