TLS ChannellD

IETF 87
Dirk Balfanz, Google

Overview

1.

2.

3

4.

5.

IPR status

IETF control of standard

. What is it? Why do we need it? Why in TLS?
Implementation status

Desired results

Client Server
ClientHello (ChannellD extension)

>

ServerHello (ChannellD extension)

< ServerHelloDone

ClientKeyExchange

ChangeCipherSpec
Proof-of-Key-Possession
Finished -
ChangeCipherSpec
P Finished

Application Data

Gcrypted Extensions: [

Encrypted Extension: {

data {
opaque x[32];
opaque y[32];
opaque r[32]; |
opaque s[32]; _
}
}

N

id : Channel ID extension,

- public key

- signature over message hashes

\ Server

ID extension)

yerHelloDone

/

WC
Proof-of-Key-Possession

Finished >
ChangeCipherSpec
< Finished
Application Dat
< pplication Data >

What is it?

e Gives persistent’ cryptographic identifier for
client.

can be reset by user.

Why do we need it?

e Lets us build on transport layer security for
application-level protocols through channel
binding.

Example: channel-bound cookies (TOFU)
Example: channel-bound login assertions
Example: channel-bound SAML (or OIC, or
...) assertions

e Detects cookie theft, MITM during login, etc.

Why in TLS?

1. TLS is good at what it does - let’s not
reinvent the wheel at other layers.

cipher negotiations, session renegotiations (while payloads continue to
flow!), various attack mitigations, etc.

2. There are:
~3 TLS implementations, but
~100 HTTP implementations, and
~10000000 applications.

Why in TLS?

1. TLS is good at what it does - let’s not
reinvent the wheel at other layers.

cipher negotiations, session renegotiations (while payloads continue to
flow!), various attack mitigations, etc.

2. There are; Let’s do the
~3 TLSX heavy lifting
~100 HT TR jm e and
~10000000 ap

Common Concerns

e ChannellD means that TLS terminators now must get
involved in application-layer auth (e.q., check cookie-
binding)!

e No! TLS terminators simply add X-CGI-TLS-ChannellD
header to the HT TP request, the rest is done by
application backend.

client TLS terminator application server

Cookie: xyz; Foo: bar Cookie: xyz; Foo: bar
>
X-TLS-ChannellD: 1234

Common Concerns
e This belongs in the application/HTTP layer!

e Different things belong in different layers:
o user authentication at the application layer
o session management at the HTTP layer

o confidentiality/integrity (creating a “secure channel”)
at the TLS layer

Common Concerns
e /t's a layer violation!
e |t's a narrow and well-defined mechanism

that allows upper layers to benefit from
transport layer security.

Common Concerns
e Changing TLS means boiling the ocean!

e \We boliled it for you: patches to openssl and
NSS exist.

e Changing 100s of HTTP implementation is
way more risky.

Common Concerns

e [want to protect my cookies, but | won’t/can’t
run TLS!

e Goforit! :-)

Common Concerns
e /can’t change my TLS implementation!
e Yes you can.
(Surely you’re patching security holes,
right?)

e /really cant'.

e It's ok to just change the latest version - this
change is backwards-compatible.

Implementation Status

e Implemented in Chrome & Google’s server

fleet.
o 2nd generation implementation (after OBC)
e Open-source patches exist for openssl, NSS
o AOSP has picked up openssl patch
o openssl main branch waiting for standardization
e No performance issues in server, client
o contrast with older OBC implementation
e Some false positives

o browser bugs
o enterprise “proxies” and client fallbacks

Desired Result

e Adoption as WG ltem for Standards-Track
RFC

Open Questions

e Uses EncryptedExtensions
o draft-agl-tls-nextprotoneg

e Cipher negotiations vs. extension versioning

