
TLS ChannelID

IETF 87 (2013-08-02 Berlin)
Dirk Balfanz, Google

Overview

1. IPR status

2. IETF control of standard

3. What is it? Why do we need it? Why in TLS?

4. Implementation status

5. Desired results

Encrypted Extensions: [
 Encrypted Extension: {
 id : Channel ID extension,
 data {
 opaque x[32];
 opaque y[32];
 opaque r[32];
 opaque s[32];
 }
 }
]

public key

signature over message hashes

What is it?

● Gives persistent1 cryptographic identifier for
client.

1can be reset by user.

Why do we need it?

● Lets us build on transport layer security for
application-level protocols through channel
binding.
Example: channel-bound cookies (TOFU)
Example: channel-bound login assertions
Example: channel-bound SAML (or OIC, or
…) assertions

● Detects cookie theft, MITM during login, etc.

Why in TLS?

1. TLS is good at what it does - let’s not
reinvent the wheel at other layers.
cipher negotiations, session renegotiations (while payloads continue to
flow!), various attack mitigations, etc.

2. There are:
~3 TLS implementations, but
~100 HTTP implementations, and
~10000000 applications.

Why in TLS?

1. TLS is good at what it does - let’s not
reinvent the wheel at other layers.
cipher negotiations, session renegotiations (while payloads continue to
flow!), various attack mitigations, etc.

2. There are:
~3 TLS implementations, but
~100 HTTP implementations, and
~10000000 applications.

Let’s do the
heavy lifting

here

Common Concerns

● ChannelID means that TLS terminators now must get
involved in application-layer auth (e.g., check cookie-
binding)!

● No! TLS terminators simply add X-CGI-TLS-ChannelID
header to the HTTP request, the rest is done by
application backend.

client TLS terminator application server

TLS

Cookie: xyz; Foo: bar Cookie: xyz; Foo: bar
X-TLS-ChannelID: 1234

Common Concerns

● This belongs in the application/HTTP layer!

● Different things belong in different layers:
○ user authentication at the application layer
○ session management at the HTTP layer
○ confidentiality/integrity (creating a “secure channel”)

at the TLS layer

Common Concerns

● It’s a layer violation!

● It’s a narrow and well-defined mechanism
that allows upper layers to benefit from
transport layer security.

Common Concerns

● Changing TLS means boiling the ocean!

● We boiled it for you: patches to openssl and
NSS exist.

● Changing 100s of HTTP implementation is
way more risky.

Common Concerns

● I want to protect my cookies, but I won’t/can’t
run TLS!

● Go for it! :-)

Common Concerns

● I can’t change my TLS implementation!

● Yes you can.
(Surely you’re patching security holes,
right?)

● I really can’t.

● It’s ok to just change the latest version - this
change is backwards-compatible.

Implementation Status

● Implemented in Chrome & Google’s server
fleet.
○ 2nd generation implementation (after OBC)

● Open-source patches exist for openssl, NSS
○ AOSP has picked up openssl patch
○ openssl main branch waiting for standardization

● No performance issues in server, client
○ contrast with older OBC implementation

● Some false positives
○ browser bugs
○ enterprise “proxies” and client fallbacks

Desired Result

● Adoption as WG Item for Standards-Track
RFC

Open Questions

● Uses EncryptedExtensions
○ draft-agl-tls-nextprotoneg

● Cipher negotiations vs. extension versioning

