
 1

NETCONF Efficiency Extensions

draft-bierman-netconf-efficiency-extensions-00
IETF 88, November 2013

Andy Bierman

 2

Agenda

● Problems with NETCONF for constrained
networks

● NETCONF-EX Solution Proposal
– 3 new protocol capabilities

– 4 new protocol operations

● Need for NETCONF-EX?

 3

NETCONF Problem Summary
for Constrained Networks

● Message sizes can be very large
● No standard caching mechanisms
● Only message encoding is XML
● Edit transactions can require a sequence of

several protocol operations
● No support for bulk edits or patch-list edits
● Data retrieval could be easier to filter so

unwanted data is not sent in the <rpc-reply>

 4

<hello> Exchange Problems

● Server always sends a <hello> message with
a complete capability list

– This capability set can be large and likely to
change infrequently

● A client could cache server capabilities if there
were standard mechanisms to support it

● The server <hello> message could be
optimized so an abbreviated version can be
sent to reduce <hello> message size by 90%

 5

Configuration Retrieval Problems

● A client is likely to retrieve the entire running
configuration with a <get-config> operation
before editing any data resources

– <rpc-reply> will be large, likely among the
largest messages sent by the server

● A client could cache server configurations if
there were standard mechanisms to support it

 6

Message Encoding Problems

● XML message encoding can be large
● The message encoding should not be coupled

to the protocol
– Encoding format should be extensible

● The client could request the desired message
encoding it wants for the session

– The message encoding could be negotiated in
the <hello> exchange, then that encoding is
used for all subsequent protocol messages

 7

Datastore Editing Problems

● Multiple protocol operations (1 to 9+) are
required to accomplish an edit transaction

– 1 <lock> + 1 <unlock> for each datastore
● candidate, running, startup == max 6 operations

– 1 <edit-config> or <copy-config> for each edit
● client can choose 1 or more edit steps

– 1 <commit> to activate the edits

– 1 <copy-config> to NV-save the edits

● If the session lost in the middle of the
transaction, the client has to start over

 8

Datastore Locking Problems

● Client lock procedure can be expensive to
implement if multiple datastores need to be
locked

● 2 clients attempting to lock multiple datastores
at the same time can get stuck holding 1 lock
and waiting for another

● A client will likely retry to get the lock if a lock-
denied error-tag is returned, so it might want
to ask the server to wait instead of returning
an error right away

 9

Confirmed Commit Problems

● Same operation <commit> is used to end a
commit and make an unconfirmed commit

– client 2 can end a confirmed-commit
procedure started by client 1

● Confirmed commit only allowed if :candidate
also supported

– network-wide commit and rollback applies
even if the :writable-running capability is
supported instead

 10

Retrieval Problems

● The <get> operation returns all data, not just
operational data

● No standard extensible metadata retrieval
● No simple instance discovery mechanism
● No sub-tree depth limit control
● Need proper YANG filter specification

 11

NETCONF-EX Solution
● :capability-id Capability

– allows caching of server capability sets
● :config-id Capability

– allows caching of server configurations
● :encoding Capability

– allows message encoding negotiation
● <edit2> Operation

– allows entire edit transaction in 1 message

● <get2> Operation

– allows simplified and optimized retrieval filtering

 12

:capability-id Capability

● Server maintains an entity tag for its active
capability set, called the ”capability-id”

● :capability-id is advertised by both peers
– Client advertises its cached capability-id, if any

– Cerver advertises its current capability-id

– Server waits slightly to receive the client
<hello> first. If a match, then send an
abbreviated <hello>, else a full <hello>

● Abreviated <hello> contains only the
:capability-id and :config-id capabilities

 13

:config-id Capability

● Server maintains an entity tag for the current
running datastore, called the ”config-id”

● :config-id is advertised by the server
– Client compares the config-id value to the

value of its cached config-id, if any

– If a match, then a <get-config> operation is not
needed because the cached copy is current

 14

:encoding Capability

● <hello> messages are always sent in XML
● If encoding negotiation fails, default is XML
● :encoding is advertised by both peers

– Client advertises a priority-ordered list of
media types desired for the session

– Server advertises an unordered list of the
media types it supports

– Highest order client entry in common is used

 15

<edit2> Operation 1/3
● Supports entire edit procedure in 1 request

– target: datastore to edit (candidate or
running datastore)

– target-resource: XPath node-set of edit
nodes (if :xpath supported)

– yang-patch: ordered edit list on the
target resource(s)

– test-only: validate request and exit
– if-match: entity-tag to match or cancel

edit

 16

<edit2> Operation 2/3
● Parameter list part 2

– with-locking: edit with exclusive write
access

– max-lock-wait: max time to wait to clear
locks

– activate-now: <commit> now if
:candidate supported

– nvstore-now: <copy-config> now if
:startup supported

 17

<edit2> Operation 3/3
● Parameter list part 3

– confirmed: start or extend a confirmed
commit

– confirm-timeout: time before revert
running

– persist: value required for followup
persist-id

 18

Confirmed Commit Operations

● <complete-commit>
– Complete a confirmed commit procedure

● <revert-commit>
– Cancel a confirmed commit procedure

● Cannot use existing operations:
– Existing <commit> and <cancel-commit> rely

on the :candidate capability

 19

<get2> Operation 1/3

● Combine several filters and locking for
optimized retrieval

– source: datastore to read
– filter-spec: extensible choice of content

filters
– keys-only: retrieve key leafs and

ancestors
– depth: return limited number of

descendant nodes

 20

<get2> Operation 2/3

● Parameter list part 2

– if-modified-since: retrieve only if
datastore changed

– full-delta: retrieve sub-trees only if data
resource changed

– with-defaults: specify defaults retrieval
mode

– with-metadata: specify metadata to
include

 21

<get2> Operation 3/3

● Parameter list part 3

– with-locking: read with exclusive write
access

– max-lock-wait: max time to wait to clear
locks

 22

Need for NETCONF-EX?

● NETCONF scope seems focused on a small
number of large routers that are well-
connected to stable high-speed networks

– Not all deployment scenarios can assume
stability, low latency, and unlimited
bandwidth for network management

● The WG should make NETCONF appropriate
for a larger set of use cases than just big
router configuration

