Segment Routing Use Cases

- Generic SR Use Cases
 - draft-filsfils-rtgwg-segment-routing-use-cases-02.txt

- SR/LDP Interoperability
 - draft-filsfils-spring-segment-routing-ldp-interop-00.txt

- OAM
 - draft-geib-spring-oam-usecase-00.txt

- To be published:
 - FRR: draft-francois-segment-routing-resiliency-use-cases
 - Service Chaining
 - SR for IPv6

- Many authors of different drafts
 - and even more contributors…
Segment Routing Use Cases

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGP-based MPLS Tunneling</td>
<td>2</td>
</tr>
<tr>
<td>Fast Reroute</td>
<td>3</td>
</tr>
<tr>
<td>Disjointness in dual-plane networks</td>
<td>4.1.1</td>
</tr>
<tr>
<td>CoS-based Traffic Engineering</td>
<td>4.1.2</td>
</tr>
<tr>
<td>Egress Peering Traffic Engineering</td>
<td>4.1.3</td>
</tr>
<tr>
<td>Deterministic non-ECMP Path</td>
<td>4.1.4</td>
</tr>
<tr>
<td>Load-balancing among non-parallel links</td>
<td>4.1.5</td>
</tr>
<tr>
<td>Traffic engineering with Admission Control</td>
<td>4.2</td>
</tr>
<tr>
<td>Capacity Planning</td>
<td>4.2.1</td>
</tr>
<tr>
<td>SDN /SR use-case</td>
<td>4.2.2</td>
</tr>
</tbody>
</table>
Simple and Efficient Transport of MPLS services

- Efficient packet networks leverage ecmp-aware shortest-path node segment
- Simplification
 - no complex LDP/ISIS synchronization to troubleshoot
 - one less protocol to operate
- IPv6 over MPLS can be deployed directly with SR
 - no need for LDPv6
CoS-based TE

- Japan to UK
 - data: via US, cheap capacity
 - voip: via Asia, low latency

- CoS-based TE with SR
 - IGP metric set such as
 > Japan to Asia: via Asia
 > Japan to UK: via US
 > Asia to UK: via Europe
 - Anycast segment “Asia” advertised by Asia core routers

- Tokyo CoS-based policy
 - Data and UK: push the node segment to UK
 ➜ ECMP-aware shortest-path to UK
 - VoIP and UK: push the anycast node to Asia, push UK
 ➜ ECMP-aware shortest-path to Asia, followed by ECMP-aware shortest-path to UK

Node segment to UK
Node segment to Asia

No TE tunnel enumeration, no TE state in the core
Simple Disjointness

- A sends traffic with [65]
 Classic ecmp “a la IP”

- A sends traffic with [111, 65]
 Packet gets attracted in blue plane and then uses classic ecmp “a la IP”

ECMP-awareness!
Engineer traffic towards egress peers

- Ingress border routers control how their traffic is balanced between peers
 - Overriding BGP decision at egress border
Local Service Segment

- 72, 78, 65: global segments representing the shortest-path respectively to C, O and Z
- 9001: local segment to C representing a local service S1
- 9002: local segment to O representing a local service S2
- Ingress node A enforces a source route of forwarding and service instructions on flow F by appending the SR list {72, 9001, 78, 9002, 65} on its packets
- 9001 and 9002 represent local services
Application controls – network delivers

- The network is simple, highly programmable and responsive to rapid changes
 - perfect support for centralized optimization efficiency, if required

2G from A to Z please

Link CD is full, I cannot use the shortest-path 65 straight to Z
Application controls – network delivers

- The network is simple, highly programmable and responsive to rapid changes

Path ABCOPZ is ok. I account the BW. Then I steer the traffic on this path.

Tunnel AZ onto {66, 68, 65}
OAM

Localizing packet loss

In a large complex network

Nicolas Guilbaud nguilbaud@google.com
Ross Cartlidge rossc@google.com

Nanog57, Feb 2013