Release of getdns-0.1.0
APPAREA, IETF 89

getdns core team

Allison Mankin, Duane Wessels (Verisign Labs)

Craig Despeaux, Neel Goyal, Glen Wiley (Verisign)

Olaf Kolkman, Willem Toorop, Wouter Wijngaards (NLnet Labs)
Melinda Shore, No Mountain Software

Outline

« Background: getdns-api spec
* Open source implementation
* Major features of this release
« Coming soon

Background of getdns-api

* Paul Hoffman edited as an app-oriented DNS API, first
publication April 2013. His slide from APPAREA, IETF 86:

— “Fully asynchronous,® has multiple ways of using
DNSSEC, supports new DNS types”

— Expanded points
e Default async
* Eased leveraging of DANE, DNSSEC, SRV, etc
* Extensible

 Updated getdns-api February 2014

* Extensive discussions during the implementation

Acknowledgements

* Paul Hoffman, along with the original getdns-api design
group, and the denizens of the getdns-api mailing list

 Matt Larson, who first envisioned this open source project

Open Source Implementation

 Two research labs, Verisign Labs and NLnet Labs,
with long-standing interest in enabling DNS
innovation and DNS-supported security
— Also on team: OSS development and QA engineers
 Open source implementation in C with BSD-New
license

— https://github.com/getdnsapi/getdns

e Qverview site
— https://getdnsapi.net

— Downloads and documentation available
— https note — best with DANE TLSA

Dependencies

Are linked outside the build tree, with configure finding
them

We strive to minimize them
Current set

e libldns and libunbound from NiInet Labs (libldns requires openssl
headers and libraries)

e |ibexpat
e |ibidn from FSF, version 1

Packagers are at work - as of IETF 89
e brew —formula exists

e RHEL —in review
e https://bugzilla.redhat.com/show bug.cgi?id=1070510

Major features of this release

Works with a variety of event loops, each built as a
separate shared library

e Details in wiki of the github repo

e |ibevent
o |ibev
e |ibuv

DNSSEC support fully implemented with well-tested
Unbound at base

Platforms as of IETF 89
e RHEL/CentQOS, MacOS
e Soon to drop: FreeBSD, iOS (now rough but usable)
e Windows, Android in view

'

DNSSEC in the APl and implementation

e DNSSEC validation is off by default for stub mode (by design
group consensus), but easy to turn on — use of extensions
defined in API

— dnssec_return_status
— dnssec_return_only_secure
— dnssec_return_validation_chain

e The API spec allows enabling DNSSEC on a per-request basis
via setting the dnssec_return_status extension. For
convenience, the implementation provides a means to
enable this extension for every request in a given context

e Documented in getdnsapi repo community wiki

Coming soon

Planned series of updates (0.1.1, 0.1.2, ...) along with more platforms

e Several fixes ready, plus a patch was contributed by community the day after
the release.

Language bindings
e Soon after IETF 89: github/getdnsapi/getdns-python
e TBA: Node.js
e TBA:Java
e Joinin!
Release 0.1.0 hasn’t implemented all of spec yet
e MDNS and NetBIOS namespaces — included in spec

e DNS search suffixes — getdns_context_set_append_name,
getdns_context_set_suffix — following DNSOP discussions...

e GETDNS_TRANSPORT_TCP_ONLY_KEEP_CONNECTIONS OPEN
e Full set of EDNS(0) and OPT extensions
e Full listin README

'

APl examples — getdns_general()

* Some APl examples are included for Extra Reading
* getdns general is typical of public entry points
 Handle arbitrary resource record types

getdns return t
getdns general (

getdns context t context,

const char *name,

uintlo t request type,
struct getdns dict *extensions,
void *userarg,

getdns transaction t *transaction id,

getdns callback t callbackfn

APl examples - getdns address()

* Handles requests by host hame

* Always returns both IPv4 and IPv6 addresses

e Uses all name spaces from the context

getdns return t

getdns address (
getdns context t
const char
struct getdns dict
void B
getdns transaction t
getdns callback t

context,

*name,
*extensions,
*userarg,
*transaction 1d,
callbackfn

APl examples - getdns_hostname()

* Accepts either IPv4 or IPv6 address

getdns return t
getdns hostname (

getdns context t
struct getdns dict
struct getdns dict
void B
getdns transaction t
getdns callback t

context,
*address,
*extensions,
*userarg,
*transaction 1d,
callbackfn

APl examples - getdns_service()

e Returns the relevant SRV information

getdns return t
getdns service (

getdns context t context,

const char *name,

struct getdns dict *extensions,
void *userarg,

getdns transaction t *transaction 1id,

getdns callback t callbackfn

Python Bindings
Repo open before April, 2014

getdns-python(in progress)

e getdns already uses very Python-friendly data
structures
* Goals

— Provide easy-to-use interface to advanced DNS

features for developers who are not necessarily
DNS experts

— remain as Pythonic as possible

'

Basic use - getdns-python

e Currently:

import getdns

C = getdns.context create ()

ext = { "return both v4 and v6" : \
getdns.GETDNS EXTENSION TRUE, "dnssec return status" : \
getdns.GETDNS EXTENSION TRUE }

getdns.address (¢, "www.google.com", getdns.GETDNS RRTYPE A, ext)

e Soon:

import getdns

c = getdns.Context ()

ext = { "return both v4 and v6" : \
getdns.GETDNS EXTENSION TRUE, "dnssec return status" : \
getdns.GETDNS EXTENSION TRUE }

c.address ("www.google.com", getdns.GETDNS RRTYPE A, ext)

SYNC VS. async

e Same basic interface, can make async calls by
providing a callback function and optionally a
transaction_id to identify the particular query

c.address ("www.google.com", getdns.GETDNS RRTYPE A, ext, \

reply processor)

Data structures

Inputs to queries are

— strings

— Dictionaries

— lists

Query replies are basically JSON documents (we haven’t yet run
the format through a JSON validator yet, though ...)

We expose standard and complete RDATA returned by the API
Complete set of getdns constants and return types

Throw Python exceptions on errors
— Currently generic exception
— Will be adding getdns exception class

What replies look like

"replies tree" dictionary element from query
response

"replies tree": [
{
This is the first reply

"header": { "id": 23456, "gr": 1, "opcode": 0, ... 1},
"question": { "gname": <bindata for "www.google.com">,
"gtype": 1, "gclass": 1 },
"answer": [{
"name": <bindata for "www.google.com">,
"type": 1,
"class": 1,
"ttl": 300,
"rdata":

{ "ipv4 address": <bindata of 0x0a0Ob0c01>
"rdata raw": <bindata of 0x0a0ObOcO01>

Replies_tree queried from Python(cont’d)

Usage from Python

import getdns
Cc = getdns.context create ()

ext { "return both v4 and v6" : \

getdns.GETDNS EXTENSION TRUE, "dnssec return status" : \
getdns.GETDNS EXTENSION TRUE }

ret = getdns.address(c, "www.google.com", getdns.GETDNS RRTYPE A, ext)

print ret['replies tree'] [0]

{'answer':
{'rdata': {'ipv4 address': '74.125.131.104'}, 'type': 1,
'class': 1, 'name': ’"\www.google.com', 'ttl': 300}}

print ret['replies tree'][0]['answer']['rdata']['ipv4 address’]

74.125.131.104

Questions?

Most answers will be found at
getdnsapi.net
and
github.com/getdnsapi

Backup Material

One API, two modes

Stub resolver
e Often implemented via local library (e.g. libresolv)
e Provides entry points for applications (e.g. gethostbyname)
e Relies on a recursive name server
e May not cache, but may implement e.g. single local
cache

Recursive Resolver

e Typically receives DNS requests via wire protocol

e [terates on behalf of clients
e Typically leverages caching

getdns-api context controls which of these (2 modes)

When DNSSEC is enabled for stub mode, the stub can
iterate just DNSSEC validation on its own behalf

Stub resolver inDNS ecosystem

Web Browser

Stub Resolver Q1: verisignlabs.com.

l a.root-servers.net I

a2 nstid.com '
' I.gtia-servers.net |

