Analysis of BFD Security According to KARP Design Guide <u>draft-ietf-karp-bfd-analysis-01</u>

> Manav Bhatia Dacheng Zhang Mahesh Jethanandani

Agenda

- Why
- KARP Analysis
- Existing algorithms
- Recommended algorithms
- Impact
- Conclusions
- Questions

Last presented at IETF 87 (Berlin)

Why?

- BFD used for liveliness check
 - IP BFD
 - Next hop liveliness check
 - IS-IS, OSPFv2, RIPv2
 - LSP BFD
 - MPLS(-TP)
 - End-to-end tunnel check

Why (cont.)?

- BFD used for liveliness check
 - In lieu of routing protocols "hellos"
 - 3 x 30 sec
 - Something shorter
 - Across AS boundaries
 - eBGP

KARP Analysis of BFD

- KARP threat analysis [RFC 6862]
 - Replay Protection
 - 32 bit sequence number
 - Incremented every 3.3 ms in Meticulous mode
 - 24 weeks
 - Weak authentication algorithms
 - MD5 or SHA-1 based
 - DoS attacks
 - Authentication packet send at a short interval

Existing Authentication Mechanisms

[RFC5880] describes five authentication mechanisms

Authentication Mechanisms	Features	Security Strength
Simple Password	Password transported in plain text	weak
Keyed MD5	sequence member required to increase occasionally	Subject to both intra and inter -session replay attacks
Keyed SHA-1	Same as Keyed MD5	Same as Keyed MD5
Meticulous Keyed MD5	sequence member required to increase monotonically	Subject to inter- session replay attacks
Meticulous Keyed SHA-1	Same as Meticulous Keyed MD5	Same as Meticulous Keyed MD5

Recommended Authentication Algorithms

- SHA-2
 - SHA-256
 - SHA-384
 - SHA-512
- HMAC
 - FIPS-198
- GMAC

Impact of Authentication Requirement

- BFD session in software
- BFD session is offloaded (hardware assist)
- BFD session is implemented in hardware

Impact of Authentication BFD in software

- CPU 500 MHz Dual Core Cavium
- Meticulous algorithm
- No hardware support for authentication
- Entirely in software
- SHA-256 and HMAC

Impact of Authentication BFD in software (cont.)

- Time interval 10 ms
 - 30 ms detection
 - No authentication
 - 16 sessions (tx + rx)
 - With authentication in software
 - 2 sessions (tx + rx) (prediction)
- Time interval of 1 s.
 - 3 s detection
 - No authentication
 - 1K sessions (tx + rx)
 - With authentication
 - 125 sessions (tx + rx) (prediction)

Impact of Authentication BFD with hw assist

- Meticulous algorithm
- SHA-2 and HMAC
- No hardware support for authentication
- Hardware does tx and rx
- Packet constructed in software
- FSM in software

BFD offloaded to hardware (cont.)

- Time interval 3.3 ms
 - 10 ms detection
 - No authentication
 - 2K sessions (tx + rx)
 - With authentication in software
 - 1 sessions (tx + rx) (prediction)
- Time interval of 10ms.
 - 30 ms detection
 - No authentication
 - 8K sessions (tx + rx)
 - With authentication
 - 2 sessions (tx + rx) (prediction)

Impact of Authentication BFD implemented in hw

- Meticulous algorithm
- SHA-1
- "Hardware support" for authentication
- Hardware manages entire session in hardware
 - Including FSM

Impact of Authentication BFD implemented in hw (cont.)

• Time interval 3.3 ms

- 10 ms detection
- No authentication
 - 128 sessions (tx + rx)
- With authentication in software
 - 16 sessions (tx + rx)
- Time interval of 10ms.
 - 30 ms detection
 - No authentication
 - 800 sessions (tx + rx)
 - With authentication
 - 100 sessions (tx + rx)
- GMAC

Conclusions

- Carefully evaluate why and where
- Be willing to pay for it
 - In performance
 - By adding hardware auth support

Questions?